|   | 
Details
   web
Records
Author McGuigan, M.P.; Wilson, A.M.
Title The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus Type Journal Article
Year 2003 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 206 Issue Pt 8 Pages 1325-1336
Keywords Animals; Biomechanics; Forelimb/anatomy & histology/*physiology; Gait/*physiology; Horses/anatomy & histology/*physiology; Muscle Contraction/*physiology; Running
Abstract A horse's legs are compressed during the stance phase, storing and then returning elastic strain energy in spring-like muscle-tendon units. The arrangement of the muscle-tendon units around the lever-like joints means that as the leg shortens the muscle-tendon units are stretched. The forelimb anatomy means that the leg can be conceptually divided into two springs: the proximal spring, from the scapula to the elbow, and the distal spring, from the elbow to the foot. In this paper we report the results of a series of experiments testing the hypothesis that there is minimal scope for muscle contraction in either spring to adjust limb compliance. Firstly, we demonstrate that the distal, passive leg spring changes length by 127 mm (range 106-128 mm) at gallop and the proximal spring by 12 mm (9-15 mm). Secondly, we demonstrate that there is a linear relationship between limb force and metacarpo-phalangeal (MCP) joint angle that is minimally influenced by digital flexor muscle activation in vitro or as a function of gait in vivo. Finally, we determined the relationship between MCP joint angle and vertical ground-reaction force at trot and then predicted the forelimb peak vertical ground-reaction force during a 12 m s(-1) gallop on a treadmill. These were 12.79 N kg(-1) body mass (BM) (range 12.07-13.73 N kg(-1) BM) for the lead forelimb and 15.23 N kg(-1) BM (13.51-17.10 N kg(-1) BM) for the non-lead forelimb.
Address Structure and Motion Laboratory, Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK. m.p.mcguigan@leeds.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:12624168 Approved no
Call Number Equine Behaviour @ team @ Serial 3655
Permanent link to this record
 

 
Author Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S.
Title Kinematic evaluation of the back in the sport horse with back pain Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 707-711
Keywords Animals; Back/*physiology; Back Pain/diagnosis/physiopathology/*veterinary; Biomechanics; Exercise Test/veterinary; Gait/*physiology; Horse Diseases/diagnosis/*physiopathology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Lumbar Vertebrae/physiology; Range of Motion, Articular; Stress, Mechanical; Thoracic Vertebrae/physiology; Weight-Bearing
Abstract REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.
Address Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656501 Approved no
Call Number Equine Behaviour @ team @ Serial 3656
Permanent link to this record
 

 
Author Rhodin, M.; Johnston, C.; Holm, K.R.; Wennerstrand, J.; Drevemo, S.
Title The influence of head and neck position on kinematics of the back in riding horses at the walk and trot Type Journal Article
Year 2005 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 37 Issue 1 Pages 7-11
Keywords Acceleration; Animals; Back/*physiology; Biomechanics; Exercise Test/veterinary; Female; Gait/*physiology; Head/*physiology; Horses/*physiology; Male; Movement/physiology; Neck/*physiology; Walking/physiology
Abstract REASONS FOR PERFORMING STUDY: A common opinion among riders and in the literature is that the positioning of the head and neck influences the back of the horse, but this has not yet been measured objectively. OBJECTIVES: To evaluate the effect of head and neck position on the kinematics of the back in riding horses. METHODS: Eight Warmblood riding horses in regular work were studied on a treadmill at walk and trot with the head and neck in 3 different predetermined positions achieved by side reins attached to the bit and to an anticast roller. The 3-dimensional movement of the thoracolumbar spine was measured from the position of skin-fixed markers recorded by infrared videocameras. RESULTS: Head and neck position influenced the movements of the back, especially at the walk. When the head was fixed in a high position at the walk, the flexion-extension movement and lateral bending of the lumbar back, as well as the axial rotation, were significantly reduced when compared to movements with the head free or in a low position. At walk, head and neck position also significantly influenced stride length, which was shortest with the head in a high position. At trot, the stride length was independent of head position. CONCLUSIONS: Restricting and restraining the position and movement of the head and neck alters the movement of the back and stride characteristics. With the head and neck in a high position stride length and flexion and extension of the caudal back were significantly reduced. POTENTIAL RELEVANCE: Use of side reins in training and rehabilitation programmes should be used with an understanding of the possible effects on the horse's back.
Address Department of Anatomy, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15651727 Approved no
Call Number Equine Behaviour @ team @ Serial 3657
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M.
Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 207 Issue Pt 21 Pages 3639-3648
Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors
Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.
Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15371472 Approved no
Call Number Equine Behaviour @ team @ Serial 3658
Permanent link to this record
 

 
Author Weishaupt, M.A.; Wiestner, T.; von Peinen, K.; Waldern, N.; Roepstorff, L.; van Weeren, R.; Meyer, H.; Johnston, C.
Title Effect of head and neck position on vertical ground reaction forces and interlimb coordination in the dressage horse ridden at walk and trot on a treadmill Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 387-392
Keywords Animals; Biomechanics; Exercise Test/instrumentation/methods/*veterinary; Forelimb/physiology; Gait; Head/physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male; Neck/physiology; Physical Conditioning, Animal/methods/*physiology; Posture; Statistics, Nonparametric; Walking/*physiology
Abstract REASONS FOR PERFORMING STUDY: Little is known in quantitative terms about the influence of different head-neck positions (HNPs) on the loading pattern of the locomotor apparatus. Therefore it is difficult to predict whether a specific riding technique is beneficial for the horse or if it may increase the risk for injury. OBJECTIVE: To improve the understanding of forelimb-hindlimb balance and its underlying temporal changes in relation to different head and neck positions. METHODS: Vertical ground reaction force and time parameters of each limb were measured in 7 high level dressage horses while being ridden at walk and trot on an instrumented treadmill in 6 predetermined HNPs: HNP1 – free, unrestrained with loose reins; HNP2 – neck raised, bridge of the nose in front of the vertical; HNP3 – neck raised, bridge of the nose behind the vertical; HNP4 – neck lowered and flexed, bridge of the nose considerably behind the vertical; HNP5 – neck extremely elevated and bridge of the nose considerably in front of the vertical; HNP6 – neck and head extended forward and downward. Positions were judged by a qualified dressage judge. HNPs were assessed by comparing the data to a velocity-matched reference HNP (HNP2). Differences were tested using paired t test or Wilcoxon signed rank test (P<0.05). RESULTS: At the walk, stride duration and overreach distance increased in HNP1, but decreased in HNP3 and HNP5. Stride impulse was shifted to the forehand in HNP1 and HNP6, but shifted to the hindquarters in HNP5. At the trot, stride duration increased in HNP4 and HNP5. Overreach distance was shorter in HNP4. Stride impulse shifted to the hindquarters in HNP5. In HNP1 peak forces decreased in the forelimbs; in HNP5 peak forces increased in fore- and hindlimbs. CONCLUSIONS: HNP5 had the biggest impact on limb timing and load distribution and behaved inversely to HNP1 and HNP6. Shortening of forelimb stance duration in HNP5 increased peak forces although the percentage of stride impulse carried by the forelimbs decreased. POTENTIAL RELEVANCE: An extremely high HNP affects functionality much more than an extremely low neck.
Address Equine Hospital, University of Zurich, CH-8057 Zurich, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402453 Approved no
Call Number Equine Behaviour @ team @ Serial 3704
Permanent link to this record
 

 
Author Licka, T.; Kapaun, M.; Peham, C.
Title Influence of rider on lameness in trotting horses Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 734-736
Keywords Animals; Biomechanics; Body Weight; Exercise Test/veterinary; Female; Forelimb/physiopathology; Gait/*physiology; Head Movements/*physiology; Hindlimb/physiopathology; Horse Diseases/diagnosis/*physiopathology; Horses; Humans; Lameness, Animal/diagnosis/*physiopathology; Male; Stress, Mechanical; Weight-Bearing/physiology
Abstract REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.
Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656506 Approved no
Call Number Equine Behaviour @ team @ Serial 3715
Permanent link to this record
 

 
Author Johnston, C.; Holm, K.R.; Erichsen, C.; Eksell, P.; Drevemo, S.
Title Kinematic evaluation of the back in fully functioning riding horses Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 6 Pages 495-498
Keywords Age Factors; Animals; Back/*physiology; Back Pain/diagnosis/veterinary; Biomechanics; Exercise Test/*veterinary; Female; Gait/*physiology; Horse Diseases/diagnosis; Horses/*physiology; Male; Movement/physiology; Sex Factors
Abstract REASONS FOR PERFORMING STUDY: Clinical history and examination are important features in diagnosis of equine back dysfunction. However, interpretation is subjective and therefore may vary substantially. OBJECTIVES: To establish a clinical tool to objectively evaluate the function of the equine back, in the form of a database on the kinematics of the back at the walk and trot in fully functioning riding horses. METHODS: Thirty-three fully functioning riding horses walked and trotted on a treadmill. Morphometrics and kinematics were tested for correlations to age, height, weight and stride length, and differences between gender (geldings and mares) and use (dressage and showjumping). RESULTS: A database for range of movement and symmetry of movement for extension and flexion, lateral bending, lateral excursion and axial rotation was presented. Symmetry values were very high for all variables. Significant differences were observed in use and gender. Age was negatively correlated to extension and flexion of the thoracolumbar junction. CONCLUSIONS: Interrelationships between use, gender and age to conformation and movement were established. POTENTIAL RELEVANCE: The database provides a basis for objective reference for diagnosis, therapy and rehabilitation of clinical cases of back dysfunction.
Address Departments of Anatomy and Histology, 75007 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15460073 Approved no
Call Number Equine Behaviour @ team @ Serial 3716
Permanent link to this record
 

 
Author Dyson, S.; Murray, R.
Title Pain associated with the sacroiliac joint region: a clinical study of 74 horses Type Journal Article
Year 2003 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 35 Issue 3 Pages 240-245
Keywords Age Factors; Analgesia/veterinary; Anesthetics, Local/pharmacology; Animals; Body Height; Body Weight; Breeding; Female; Forelimb; Gait; Hindlimb; Horse Diseases/*diagnosis/radionuclide imaging; Horses; Lameness, Animal/*physiopathology; Lumbar Vertebrae/physiopathology; Male; Pain/diagnosis/drug therapy/radionuclide imaging/*veterinary; Sacroiliac Joint/*physiopathology; Sacrum/physiopathology
Abstract REASONS FOR PERFORMING STUDY: There has been no large study of horses with suspected sacroiliac (SI) joint region pain in which the clinical diagnosis has been supported by either abnormal radiopharmaceutical activity in the SI joint region or by periarticular infiltration of local anaesthetic solution. OBJECTIVES: To describe the clinical features of horses with SI joint region pain, to document the age, breed, sex, discipline, size and conformation of affected horses and to compare these with the author's (SD) normal case population and to document the results of infiltration of local anaesthetic solution around the SI joint region. METHODS: Horses were selected for inclusion in the study based upon the exclusion of other causes of lameness or poor performance, together with clinical signs suggestive of SI joint pain and abnormal radiopharmaceutical activity in the SI joint region and/or a positive response to periarticular infiltration of local anaesthetic solution. RESULTS: Sacroiliac joint region disease was identified in 74 horses between November 1997 and March 2002. Dressage and showjumping horses appeared to be at particular risk (P < 0.001). Affected horses were generally slightly older than the normal clinic population (P < 0.0001), taller at the withers (P < 0.0001) and of greater bodyweight (P < 0.01). There was a significant effect of breed (P < 0.001), with a substantially higher proportion of Warmblood horses (51%) in the SI pain group compared to the normal clinic population (29%). There was no correlation between conformation and the presence of SI joint region pain. The tubera sacrale appeared grossly symmetrical in most (95%) horses. Poor development of the epaxial muscles in the thoracolumbar region and asymmetry of the hindquarter musculature were common. Twenty-six horses (35%) showed restricted flexibility of the thoracolumbar region and 10 (16%) had an exaggerated response to pressure applied over the tubera sacrale. Fourteen horses (19%) were reluctant to stand on one hindlimb for prolonged periods. The majority of horses (75%) had a straight hindlimb flight and only 18% moved closely behind or plaited. In all horses restricted hindlimb impulsion was the predominant feature; invariably this was most obvious when the horse was ridden. Stiffness, unwillingness to work on the bit and poor quality canter were common. Sacroiliac joint region pain was seen alone (47%), or in conjunction with thoracolumbar pain (16%), hindlimb lameness (20%), forelimb lameness (7%) or a combination of problems (10%). Seventy-three horses (99%) had abnormalities of the SI joint region identified using nuclear scintigraphy. Infiltration of local anaesthetic solution around the SI joint region produced profound improvement in gait in all 34 horses in which it was performed. CONCLUSIONS AND POTENTIAL RELEVANCE: Careful clinical examination combined with scintigraphic evaluation of the SI joint region and local analgesia can enable a more definitive diagnosis of SI joint region pain than has previously been possible.
Address Centre for Equine Studies, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:12755425 Approved no
Call Number Equine Behaviour @ team @ Serial 3723
Permanent link to this record
 

 
Author Barrey, E.; Desliens, F.; Poirel, D.; Biau, S.; Lemaire, S.; Rivero, J.L.L.; Langlois, B.
Title Early evaluation of dressage ability in different breeds Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 319-324
Keywords Animals; Biomechanics; Breeding; Discriminant Analysis; Female; Forelimb; Gait/genetics/*physiology; Hindlimb; Horses/anatomy & histology/*genetics/*physiology; Male; Photography/veterinary; *Physical Conditioning, Animal; Sports
Abstract Dressage is one of the Olympic equestrian sports practiced in several countries using different horse breeds. Specific characteristics of the walk, trot and canter are required for dressage. It has been assumed that some of these traits could be selected for genetically and contribute to dressage performance. The purpose of this study was to compare the walk, trot and conformation characteristics in young horses of different breeds used for dressage. A total of 142 horses age 3 years were classified into 3 groups of breeds (German, French and Spanish saddle horses) and tested using the same procedure. The skeletal conformation measurements were made by image analysis. Gait variables of the walk and trot were measured by the accelerometric gait analysis system Equimetrix. Discriminant analysis could explain the variability between the groups by taking into account the walk (P<0.0003), trot (P<0.0001) and conformation variables (P<0.0001). Many gait and conformation variables were significantly different between the breeds. In summary, the German horses had gait characteristics more adapted for dressage competition, and the results of this group could be used as a reference for early evaluation in dressage. Purebred Spanish horses could be considered as a reference for collected gaits used for farm work and old academic dressage. The gait and conformation tests could be applied in a breeding or crossing plan to detect more accurately young horses with good dressage ability.
Address INRA, Station de Genetique Quantitative et Appliquee, Groupe Cheval, Jouy-en-Josas, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405708 Approved no
Call Number Equine Behaviour @ team @ Serial 3726
Permanent link to this record
 

 
Author Clayton, H.M.; Lanovaz, J.L.; Schamhardt, H.C.; van Wessum, R.
Title The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot Type Journal Article
Year 1999 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume 30 Issue Pages 218-221
Keywords Animals; Body Weight; Computer Simulation; Gait/*physiology; Horses/*physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/*physiology
Abstract Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.
Address Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824-1314, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:10659255 Approved no
Call Number Equine Behaviour @ team @ Serial 3733
Permanent link to this record