toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Terrace, H.S. doi  openurl
  Title Chunking by a pigeon in a serial learning task Type Journal Article
  Year 1987 Publication Nature Abbreviated Journal Nature  
  Volume 325 Issue 7000 Pages 149-151  
  Keywords (up) Animals; Cognition/*physiology; Columbidae/*physiology; Feedback; Learning/*physiology; Male  
  Abstract A basic principle of human memory is that lists that can be organized into memorable 'chunks' are easier to remember. Memory span is limited to a roughly constant number of chunks and is to a large extent independent of the amount of informaton contained in each chunk. Depending on the ingenuity of the code used to integrate discrete items into chunks, one can substantially increase the number of items that can be recalled correctly. Newly developed paradigms for studying memory in non-verbal organisms allow comparison of the abilities of human and non-human subjects to memorize lists. Here I present two types of evidence that pigeons 'chunk' 5-element lists whose components (colours and achromatic geometric forms) are clustered into distinct groups. Those lists were learned twice as rapidly as a homogeneous list of colours or heterogeneous lists in which the elements are not clustered. The pigeons were also tested for knowledge of the order of two elements drawn from the 5-element lists. They responded in the correct order only to those subsets that contained a chunk boundary. Thus chunking can be studied profitably in animal subjects; the cognitive processes that allow an organism to form chunks do no presuppose linguistic competence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3808071 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2792  
Permanent link to this record
 

 
Author Paz-y-Miño C. G.; Bond, A.B.; Kamil, A.C.; Balda, R.P. doi  openurl
  Title Pinyon jays use transitive inference to predict social dominance Type Journal Article
  Year 2004 Publication Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 778-781  
  Keywords (up) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract Living in large, stable social groups is often considered to favour the evolution of enhanced cognitive abilities, such as recognizing group members, tracking their social status and inferring relationships among them. An individual's place in the social order can be learned through direct interactions with others, but conflicts can be time-consuming and even injurious. Because the number of possible pairwise interactions increases rapidly with group size, members of large social groups will benefit if they can make judgments about relationships on the basis of indirect evidence. Transitive reasoning should therefore be particularly important for social individuals, allowing assessment of relationships from observations of interactions among others. Although a variety of studies have suggested that transitive inference may be used in social settings, the phenomenon has not been demonstrated under controlled conditions in animals. Here we show that highly social pinyon jays (Gymnorhinus cyanocephalus) draw sophisticated inferences about their own dominance status relative to that of strangers that they have observed interacting with known individuals. These results directly demonstrate that animals use transitive inference in social settings and imply that such cognitive capabilities are widespread among social species.  
  Address Center for Avian Cognition, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306809 Approved no  
  Call Number refbase @ user @; Equine Behaviour @ team @ room B 3.029 Serial 352  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Cognitive science: rank inferred by reason Type Journal Article
  Year 2004 Publication Nature Abbreviated Journal Nature  
  Volume 430 Issue 7001 Pages 732-733  
  Keywords (up) Animals; Cognition/*physiology; Group Structure; Male; *Social Dominance; Songbirds/*physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15306792 Approved no  
  Call Number refbase @ user @ Serial 365  
Permanent link to this record
 

 
Author Flack, J.C.; Girvan, M.; de Waal, F.B.M.; Krakauer, D.C. doi  openurl
  Title Policing stabilizes construction of social niches in primates Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal Nature  
  Volume 439 Issue 7075 Pages 426-429  
  Keywords (up) Animals; Conflict (Psychology); Female; Macaca nemestrina/*physiology/*psychology; Male; Models, Biological; *Social Behavior  
  Abstract All organisms interact with their environment, and in doing so shape it, modifying resource availability. Termed niche construction, this process has been studied primarily at the ecological level with an emphasis on the consequences of construction across generations. We focus on the behavioural process of construction within a single generation, identifying the role a robustness mechanism--conflict management--has in promoting interactions that build social resource networks or social niches. Using 'knockout' experiments on a large, captive group of pigtailed macaques (Macaca nemestrina), we show that a policing function, performed infrequently by a small subset of individuals, significantly contributes to maintaining stable resource networks in the face of chronic perturbations that arise through conflict. When policing is absent, social niches destabilize, with group members building smaller, less diverse, and less integrated grooming, play, proximity and contact-sitting networks. Instability is quantified in terms of reduced mean degree, increased clustering, reduced reach, and increased assortativity. Policing not only controls conflict, we find it significantly influences the structure of networks that constitute essential social resources in gregarious primate societies. The structure of such networks plays a critical role in infant survivorship, emergence and spread of cooperative behaviour, social learning and cultural traditions.  
  Address Santa Fe Institute, Santa Fe, New Mexico 87501, USA. jflack@santafe.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16437106 Approved no  
  Call Number refbase @ user @ Serial 298  
Permanent link to this record
 

 
Author Novacek, M.J. doi  openurl
  Title Mammalian phylogeny: shaking the tree Type Journal Article
  Year 1992 Publication Nature Abbreviated Journal Nature  
  Volume 356 Issue 6365 Pages 121-125  
  Keywords (up) Animals; Evolution; Fossils; Mammals/classification/*genetics; *Phylogeny  
  Abstract Recent palaeontological discoveries and the correspondence between molecular and morphological results provide fresh insight on the deep structure of mammalian phylogeny. This new wave of research, however, has yet to resolve some important issues.  
  Address American Museum of Natural History, New York 10024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1545862 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3546  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Animal behaviour: planning for breakfast Type Journal Article
  Year 2007 Publication Nature Abbreviated Journal Nature  
  Volume 445 Issue 7130 Pages 825-826  
  Keywords (up) Animals; Feeding Behavior/*physiology; *Food; Haplorhini/physiology; Memory/physiology; Songbirds/*physiology; Thinking/*physiology  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17314961 Approved no  
  Call Number refbase @ user @ Serial 356  
Permanent link to this record
 

 
Author Moon, C.; Baldridge, M.T.; Wallace, M.A.; Burnham, C.-A.D.; Virgin, H.W.; Stappenbeck, T.S. url  doi
openurl 
  Title Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation Type Journal Article
  Year 2015 Publication Nature Abbreviated Journal Nature  
  Volume 521 Issue 7550 Pages 90-93  
  Keywords (up) Phenotype  
  Abstract The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control1-5. In many cases, the microbiota is the presumed culprit of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice6,7. In conventionally raised mice, the microbiome is transmitted from the dam2,8,9. Here we show that microbially–driven dichotomous fecal IgA levels in WT mice within the same facility mimic the effects of chromosomal mutations. We observed in multiple facilities that vertically-transmissible bacteria in IgA-Low mice dominantly lowered fecal IgA levels in IgA-High mice after cohousing or fecal transplantation. In response to injury, IgA-Low mice showed increased damage that was transferable by fecal transplantation and driven by fecal IgA differences. We found that bacteria from IgA-Low mice degraded the secretory component (SC) of SIgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose fecal IgA as one marker of microbial variability and conclude that cohousing and/or fecal transplantation enables analysis of progeny from different dams.  
  Address Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language eng Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6005  
Permanent link to this record
 

 
Author Ferrero, D.M.; Moeller, L.M.; Osakada, T.; Horio, N.; Li, Q.; Roy, D.S.; Cichy, A.; Spehr, M.; Touhara, K.; Liberles, S.D. doi  openurl
  Title A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system Type Journal Article
  Year 2013 Publication Abbreviated Journal Nature  
  Volume 502 Issue 7471 Pages 368-371  
  Keywords (up) Pheromone Olfactory receptors  
  Abstract Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state1. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ2, 3. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print