|   | 
Details
   web
Records
Author Shettleworth, S.J.
Title Varieties of learning and memory in animals Type Journal Article
Year 1993 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 19 Issue 1 Pages 5-14
Keywords (up) Animals; Association Learning; Birds; Conditioning, Classical; Evolution; Imprinting (Psychology); *Learning; *Memory; Social Environment; Species Specificity; Taste
Abstract It is often assumed that there is more than one kind of learning--or more than one memory system--each of which is specialized for a different function. Yet, the criteria by which the varieties of learning and memory should be distinguished are seldom clear. Learning and memory phenomena can differ from one another across species or situations (and thus be specialized) in a number of different ways. What is needed is a consistent theoretical approach to the whole range of learning phenomena, and one is explored here. Parallels and contrasts in the study of sensory systems illustrate one way to integrate the study of general mechanisms with an appreciation of species-specific adaptations.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:8418217 Approved no
Call Number refbase @ user @ Serial 380
Permanent link to this record
 

 
Author Vallortigara, G.; Rogers, L.J.
Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci
Volume 28 Issue 4 Pages 575-89; discussion 589-633
Keywords (up) Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology
Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-525X ISBN Medium
Area Expedition Conference
Notes PMID:16209828 Approved no
Call Number Equine Behaviour @ team @ Serial 4622
Permanent link to this record
 

 
Author Gomez, J.-C.
Title Species comparative studies and cognitive development Type Journal Article
Year 2005 Publication Trends in Cognitive Sciences Abbreviated Journal Trends. Cognit. Sci.
Volume 9 Issue 3 Pages 118-125
Keywords (up) Animals; Attention/physiology; Brain/*growth & development; Child, Preschool; Cognition/*physiology; Concept Formation/physiology; Dogs; Evolution; Fixation, Ocular; Gorilla gorilla; Humans; Infant; Learning/*physiology; Macaca mulatta; Mental Recall/physiology; Personal Construct Theory; Psychomotor Performance/physiology; Species Specificity
Abstract The comparative study of infant development and animal cognition brings to cognitive science the promise of insights into the nature and origins of cognitive skills. In this article, I review a recent wave of comparative studies conducted with similar methodologies and similar theoretical frameworks on how two core components of human cognition--object permanence and gaze following--develop in different species. These comparative findings call for an integration of current competing accounts of developmental change. They further suggest that evolution has produced developmental devices capable at the same time of preserving core adaptive components, and opening themselves up to further adaptive change, not only in interaction with the external environment, but also in interaction with other co-developing cognitive systems.
Address Scottish Primate Research Group, School of Psychology, University of St Andrews, St Andrews, Fife KY15 9JU, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-6613 ISBN Medium
Area Expedition Conference
Notes PMID:15737820 Approved no
Call Number Equine Behaviour @ team @ Serial 2851
Permanent link to this record
 

 
Author Gallup, G.G.J.
Title Do minds exist in species other than our own? Type Journal Article
Year 1985 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 9 Issue 4 Pages 631-641
Keywords (up) Animals; Awareness; *Behavior, Animal; Child Psychology; Child, Preschool; *Cognition; Consciousness; Evolution; Humans; Infant; Language; Pan troglodytes; Philosophy; Psychological Theory; Species Specificity
Abstract An answer to the question of animal awareness depends on evidence, not intuition, anecdote, or debate. This paper examines some of the problems inherent in an analysis of animal awareness, and whether animals might be aware of being aware is offered as a more meaningful distinction. A framework is presented which can be used to make a determination about the extent to which other species have experiences similar to ours based on their ability to make inferences and attributions about mental states in others. The evidence from both humans and animals is consistent with the idea that the capacity to use experience to infer the experience of others is a byproduct of self-awareness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:4080281 Approved no
Call Number Equine Behaviour @ team @ Serial 2808
Permanent link to this record
 

 
Author Ishida, N.; Oyunsuren, T.; Mashima, S.; Mukoyama, H.; Saitou, N.
Title Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse Type Journal Article
Year 1995 Publication Journal of Molecular Evolution Abbreviated Journal J Mol Evol
Volume 41 Issue 2 Pages 180-188
Keywords (up) Animals; Base Sequence; Chromosomes; Conserved Sequence/genetics; DNA, Mitochondrial/*genetics; Evolution; Genetic Variation/*genetics; Horses/*genetics; Molecular Sequence Data; *Phylogeny; RNA, Transfer, Pro/genetics; Sequence Alignment; Sequence Analysis, DNA
Abstract The noncoding region between tRNAPro and the large conserved sequence block is the most variable region in the mammalian mitochondrial DNA D-loop region. This variable region (ca. 270 bp) of four species of Equus, including Mongolian and Japanese native domestic horses as well as Przewalskii's (or Mongolian) wild horse, were sequenced. These data were compared with our recently published Thoroughbred horse mitochondrial DNA sequences. The evolutionary rate of this region among the four species of Equus was estimated to be 2-4 x 10(-8) per site per year. Phylogenetic trees of Equus species demonstrate that Przewalskii's wild horse is within the genetic variation among the domestic horse. This suggests that the chromosome number change (probably increase) of the Przewalskii's wild horse occurred rather recently.
Address Laboratory of Molecular and Cellular Biology, Japan Racing Association, Tokyo
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2844 ISBN Medium
Area Expedition Conference
Notes PMID:7666447 Approved no
Call Number Equine Behaviour @ team @ Serial 5042
Permanent link to this record
 

 
Author Real, L.A.
Title Animal choice behavior and the evolution of cognitive architecture Type Journal Article
Year 1991 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 253 Issue 5023 Pages 980-986
Keywords (up) Animals; Bees/genetics/*physiology; Biomechanics; *Choice Behavior; *Cognition; *Evolution; Mathematics; Models, Genetic; Probability
Abstract Animals process sensory information according to specific computational rules and, subsequently, form representations of their environments that form the basis for decisions and choices. The specific computational rules used by organisms will often be evolutionarily adaptive by generating higher probabilities of survival, reproduction, and resource acquisition. Experiments with enclosed colonies of bumblebees constrained to foraging on artificial flowers suggest that the bumblebee's cognitive architecture is designed to efficiently exploit floral resources from spatially structured environments given limits on memory and the neuronal processing of information. A non-linear relationship between the biomechanics of nectar extraction and rates of net energetic gain by individual bees may account for sensitivities to both the arithmetic mean and variance in reward distributions in flowers. Heuristic rules that lead to efficient resource exploitation may also lead to subjective misperception of likelihoods. Subjective probability formation may then be viewed as a problem in pattern recognition subject to specific sampling schemes and memory constraints.
Address Department of Biology, University of North Carolina, Chapel Hill 27599-3280
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:1887231 Approved no
Call Number Equine Behaviour @ team @ Serial 2846
Permanent link to this record
 

 
Author Fabrega, H.J.
Title Making sense of behavioral irregularities of great apes Type Journal Article
Year 2006 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 30 Issue 8 Pages 1260-73; discussion 1274-7
Keywords (up) Animals; Behavior/*physiology; Evolution; Hominidae/*physiology; Humans; Mental Disorders/*physiopathology; Neurosciences; *Psychopathology; Social Behavior
Abstract Psychopathology, mental illness, and psychiatric treatment are concepts relevant to modern medicine and medical psychology and replete with cumbersome intellectual and literary baggage. They bear the imprint of suppositions, world views, and general beliefs and values exemplified in the science, history, and general culture of Anglo European societies. The study in higher apes of phenomena addressed by such concepts raises conceptual dilemmas, usually termed speciesism and anthropomorphism, not unlike those encountered in comparative human studies of similar phenomena across cultures and historical periods, namely, ethnocentrism and anachronism. The authors' synthesis of literature and their analysis of the implications of higher ape psychopathology represent an epistemically compelling account that broadens the scope of the comparative study of behavioral irregularities, a topic that provides a different slant for examining challenging questions in evolutionary biology and primatology, such as cognition, self awareness, intentional behavior, culture and behavioral traditions, social intelligence, sickness and healing, and altruism. Theoretical and empirical study of this topic expands formulation and can help provide informative answers about human evolution as well as essential features of human psychiatric syndromes, with potential practical implications. The study of psychopathology of higher apes and other non human primates represents an appropriate focus for neuroscience and bio-behavioral sciences.
Address Department of Psychiatry and Anthropology, University of Pittsburgh, School of Medicine, 3811 Ohara Street, Pittsburgh, PA 15213, USA. hfabregajr@adelphia.net
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:17079015 Approved no
Call Number Equine Behaviour @ team @ Serial 2802
Permanent link to this record
 

 
Author Nettle, D.
Title The evolution of personality variation in humans and other animals Type Journal Article
Year 2006 Publication The American Psychologist Abbreviated Journal Am Psychol
Volume 61 Issue 6 Pages 622-631
Keywords (up) Animals; Birds; *Evolution; Female; Fishes; Humans; Insects; Male; Personality/*genetics/*physiology
Abstract A comprehensive evolutionary framework for understanding the maintenance of heritable behavioral variation in humans is yet to be developed. Some evolutionary psychologists have argued that heritable variation will not be found in important, fitness-relevant characteristics because of the winnowing effect of natural selection. This article propounds the opposite view. Heritable variation is ubiquitous in all species, and there are a number of frameworks for understanding its persistence. The author argues that each of the Big Five dimensions of human personality can be seen as the result of a trade-off between different fitness costs and benefits. As there is no unconditionally optimal value of these trade-offs, it is to be expected that genetic diversity will be retained in the population.
Address University of Newcastle, Newcastle, United Kingdom. daniel.nettle@ncl.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-066X ISBN Medium
Area Expedition Conference
Notes PMID:16953749 Approved no
Call Number Equine Behaviour @ team @ Serial 4105
Permanent link to this record
 

 
Author Macfadden, B.J.
Title Evolution. Fossil horses--evidence for evolution Type Journal Article
Year 2005 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 307 Issue 5716 Pages 1728-1730
Keywords (up) Animals; Body Size; DNA, Mitochondrial; Diet; *Equidae/anatomy & histology/classification/genetics; *Evolution; Feeding Behavior; *Fossils; *Horses/anatomy & histology/classification/genetics; Paleodontology; Phylogeny; Time; Tooth/anatomy & histology
Abstract
Address Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA. bmacfadd@flmnh.ufl.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-9203 ISBN Medium
Area Expedition Conference
Notes PMID:15774746 Approved no
Call Number Serial 1892
Permanent link to this record
 

 
Author Shoshani, J.; Kupsky, W.J.; Marchant, G.H.
Title Elephant brain. Part I: gross morphology, functions, comparative anatomy, and evolution Type Journal Article
Year 2006 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull
Volume 70 Issue 2 Pages 124-157
Keywords (up) Animals; Brain/*anatomy & histology/blood supply/*physiology; Cats; Chinchilla; Elephants/*anatomy & histology/*physiology; Equidae; *Evolution; Female; Guinea Pigs; Haplorhini; Humans; Hyraxes; Male; Pan troglodytes; Sheep; Wolves
Abstract We report morphological data on brains of four African, Loxodonta africana, and three Asian elephants, Elephas maximus, and compare findings to literature. Brains exhibit a gyral pattern more complex and with more numerous gyri than in primates, humans included, and in carnivores, but less complex than in cetaceans. Cerebral frontal, parietal, temporal, limbic, and insular lobes are well developed, whereas the occipital lobe is relatively small. The insula is not as opercularized as in man. The temporal lobe is disproportionately large and expands laterally. Humans and elephants have three parallel temporal gyri: superior, middle, and inferior. Hippocampal sizes in elephants and humans are comparable, but proportionally smaller in elephant. A possible carotid rete was observed at the base of the brain. Brain size appears to be related to body size, ecology, sociality, and longevity. Elephant adult brain averages 4783 g, the largest among living and extinct terrestrial mammals; elephant neonate brain averages 50% of its adult brain weight (25% in humans). Cerebellar weight averages 18.6% of brain (1.8 times larger than in humans). During evolution, encephalization quotient has increased by 10-fold (0.2 for extinct Moeritherium, approximately 2.0 for extant elephants). We present 20 figures of the elephant brain, 16 of which contain new material. Similarities between human and elephant brains could be due to convergent evolution; both display mosaic characters and are highly derived mammals. Humans and elephants use and make tools and show a range of complex learning skills and behaviors. In elephants, the large amount of cerebral cortex, especially in the temporal lobe, and the well-developed olfactory system, structures associated with complex learning and behavioral functions in humans, may provide the substrate for such complex skills and behavior.
Address Department of Biology, University of Asmara, P.O. Box 1220, Asmara, Eritrea (Horn of Africa). hezy@bio.uoa.edu.er
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-9230 ISBN Medium
Area Expedition Conference
Notes PMID:16782503 Approved no
Call Number Equine Behaviour @ team @ Serial 2623
Permanent link to this record