|   | 
Details
   web
Records
Author Takahashi, T.; Kasashima, Y.; Eto, D.; Mukai, K.; Hiraga, A.
Title Effect of uphill exercise on equine superficial digital flexor tendon forces at trot and canter Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 435-439
Keywords (up) Animals; Biomechanics; Exercise Test/veterinary; Female; Forelimb/physiology; Hoof and Claw/physiology; Horses/*physiology; Male; Physical Conditioning, Animal/*methods/*physiology; Tarsal Joints/*physiology; Tarsus, Animal; Tendon Injuries/etiology/prevention & control/veterinary; Time Factors
Abstract REASONS FOR PERFORMING STUDY: One cause of overstrain injury to the superficial digital flexor tendon (SDFT) in horses is the force loaded on the SDFT during repeated running. Therefore, decreasing this force may reduce SDFT injury. It has been reported that strain on the SDFT decreases with a toe-wedge shoe. Uphill courses are used for training of racehorses, and the angle of hoof-sole to the horizon during uphill running is similar to that of the toe-wedge shoe. OBJECTIVES: To determine the effects of uphill exercise on the force on the SDFT during trotting and cantering. METHODS: Arthroscopically implantable force probes (AIFP) were implanted into the SDFT of the left or right forelimb of 7 Thoroughbred horses and AIFP output recorded during trotting and cantering on a treadmill inclined at slopes of 0, 3 or 8%, and then 0% again. Superficial digital flexor tendon force was calculated as a relative value, with the amplitude of AIFP output voltage at initial 0% slope equal to 100. RESULTS: Out of 14 sets of experiments, AIFP data were analysed successfully in 9 at the trot, in 3 at the canter in the trailing forelimb on a slope of 3 and 8%, and in 2 at the canter in the leading forelimb on a slope of 3%. Increasing the incline from 0-8% tended to decrease peak force in the SDFT at the trot, and in the trailing forelimb at the canter. However, force in the SDFT was unchanged in the leading forelimb at the canter on the 3% incline. CONCLUSIONS: The force in the SDFT trotting or cantering uphill is unchanged or lower than that loaded at the same speed on a flat surface. Because at similar speeds the workload for uphill exercise is greater than on the flat, uphill running increases exercise intensity without increasing force in the SDFT. POTENTIAL RELEVANCE: Uphill exercise may reduce the risk of SDFT injury as both running speed and SDFT force are decreased on an incline as compared to the flat, even when exercise intensity is the same. Further study is needed to confirm these findings at canter in a larger population of horses.
Address Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402462 Approved no
Call Number Equine Behaviour @ team @ Serial 4005
Permanent link to this record
 

 
Author Bystrom, A.; Roepstorff, L.; Johnston, C.
Title Effects of draw reins on limb kinematics Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 452-456
Keywords (up) Animals; Biomechanics; Exercise Test; Forelimb/physiology; Head/physiology; Hindlimb/physiology; Horses/*physiology; Humans; Movement/physiology; Neck/physiology; Physical Conditioning, Animal/*methods/*physiology; Weight-Bearing/physiology
Abstract REASONS FOR PERFORMING STUDY: No data exist on the GRF-kinematics relation due to changes caused by equestrian interventions. HYPOTHESIS: Through the judicious use of draw reins the rider can influence the kinematics of the horse to meet stated goals of dressage training. Relating the results to previously published kinetic data of the same experiment implies a possible relationship between kinetics and kinematics. METHODS: The kinematics of 8 sound Swedish Warmblood horses were measured whilst the horses were being ridden with and without draw reins. Three conditions were evaluated: 1) draw reins only (DR), 2) combination of draw reins and normal reins (NR+DR) and 3) normal reins only (NR). RESULTS: Head and neck angles were significantly decreased by the draw rein but 4-5 times more so for DR when with NR+DR. The forelimb position at hoof lift-off was significantly more caudal with DR. In the hind limb the hip joint extended more quickly and the hock joint flexed more with NR+DR than with NR. Compared to DR the hip joint angular pattern was not significantly different, but the pelvis was more horizontal. CONCLUSION: Riding with a draw rein can have significant influence on the kinematics of the horse. Some of the observed changes can be coupled to changes in kinetics. The hock joint angle seems to be a fairly reliable indicator of load on the hind limb and the angle of femur appears important for hind limb propulsion, when considered in conjunction with the orientation of the pelvis. POTENTIAL RELEVANCE: These findings are important for riders and trainers, as kinematic changes are what trainers observe. It is thereby important to ascertain which kinematic changes are consistently coupled to changes in kinetics in order for trainers to be able to judge correctly the success of intended goals. Further studies are warranted to validate and confirm suggested relationships between kinetics and kinematics.
Address Department of Equine Studies, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402465 Approved no
Call Number Equine Behaviour @ team @ Serial 3701
Permanent link to this record
 

 
Author Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C.
Title Forelimb tendon loading during jump landings and the influence of fence height Type Journal Article
Year 2001 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 33 Pages 6-10
Keywords (up) Animals; Biomechanics; Forelimb/injuries/physiology; Horses/injuries/*physiology; Lameness, Animal/etiology; Ligaments, Articular/*physiology; Locomotion/*physiology; Physical Conditioning, Animal; Tendon Injuries/complications/physiopathology/veterinary; Tendons/*physiology; Weight-Bearing/physiology
Abstract Lameness in athletic horses is often caused by forelimb tendon injuries, especially in the interosseus tendon (TI) and superficial digital flexor tendon (SDF), but also in the accessory ligament (AL) of the deep digital flexor tendon (DDF). In an attempt to explain the aetiology of these injuries, the present study investigated the loading of the tendons during landing after a jump. In jumping horses, the highest forces can be expected in the trailing limb during landing. Therefore, landing kinematics and ground reaction forces of the trailing forelimb were measured from 6 horses jumping single fences with low to medium heights of 0.80, 1.00 and 1.20 m. The tendon forces were calculated using inverse dynamics and an in vitro model of the lower forelimb. Calculated peak forces in the TI, SDF and DDF + AL during landing were 15.8, 13.9 and 11.7 kN respectively. The relative loading of the tendons (landing forces compared with failure forces determined in a separate study) increased from DDF to TI to SDF and was very high in SDF. This explains the low injury incidence of the DDF and the high injury incidence of the SDF. Fence height substantially influenced SDF forces, whereas it hardly influenced TI forces and did not influence AL strain. Reduction of fence height might therefore limit the risks for SDF injuries, but not for TI and AL injuries.
Address Department of Veterinary Anatomy and Physiology, Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:11721571 Approved no
Call Number Equine Behaviour @ team @ Serial 3786
Permanent link to this record
 

 
Author Meershoek, L.S.; Roepstorff, L.; Schamhardt, H.C.; Johnston, C.; Bobbert, M.F.
Title Joint moments in the distal forelimbs of jumping horses during landing Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 4 Pages 410-415
Keywords (up) Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Horses/*physiology; Joints/*physiology; Physical Conditioning, Animal; Tendons/*physiology; Weight-Bearing
Abstract Tendon injuries are an important problem in athletic horses and are probably caused by excessive loading of the tendons during demanding activities. As a first step towards understanding these injuries, the tendon loading was quantified during jump landings. Kinematics and ground reaction forces were collected from the leading and trailing forelimbs of 6 experienced jumping horses. Joint moments were calculated using inverse dynamic analysis. It was found that the variation of movement and loading patterns was small, both within and between horses. The peak flexor joint moments in the coffin and fetlock joints were larger in the trailing limb (-0.62 and -2.44 Nm/kg bwt, respectively) than in the leading limb (-0.44 and -1.93 Nm/kg bwt, respectively) and exceeded literature values for trot by 82 and 45%. Additionally, there was an extensor coffin joint moment in the first half of the stance phase of the leading limb (peak value 0.26+/-0.18 Nm/kg bwt). From these results, it was concluded that the loading of the flexor tendons during landing was higher in the trailing than in the leading limb and that there was an unexpected loading of the extensor tendon in the leading limb.
Address Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:11469776 Approved no
Call Number Equine Behaviour @ team @ Serial 3787
Permanent link to this record
 

 
Author Gomez Alvarez, C.B.; Rhodin, M.; Bobber, M.F.; Meyer, H.; Weishaupt, M.A.; Johnston, C.; Van Weeren, P.R.
Title The effect of head and neck position on the thoracolumbar kinematics in the unridden horse Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 445-451
Keywords (up) Animals; Biomechanics; Head/*physiology; Horses/*physiology; Lumbar Vertebrae/physiology; Male; Neck/*physiology; Physical Conditioning, Animal/physiology; Posture/*physiology; Sports; Thoracic Vertebrae/physiology; Weight-Bearing
Abstract REASONS FOR PERFORMING STUDY: In many equestrian activities a specific position of head and/or neck is required that is dissimilar to the natural position. There is controversy about the effects of these positions on locomotion pattern, but few quantitative data are available. OBJECTIVES: To quantify the effects of 5 different head and neck positions on thoracolumbar kinematics of the horse. METHODS: Kinematics of 7 high level dressage horses were measured walking and trotting on an instrumented treadmill with the head and neck in the following positions: HNP2 = neck raised, bridge of the nose in front of the vertical; HNP3 = as HNP2 with bridge of the nose behind the vertical; HNP4 = head and neck lowered, nose behind the vertical; HNP5 = head and neck in extreme high position; HNP6 = head and neck forward and downward. HNP1 was a speed-matched control (head and neck unrestrained). RESULTS: The head and neck positions affected only the flexion-extension motion. The positions in which the neck was extended (HNP2, 3, 5) increased extension in the anterior thoracic region, but increased flexion in the posterior thoracic and lumbar region. For HNP4 the pattern was the opposite. Positions 2, 3 and 5 reduced the flexion-extension range of motion (ROM) while HNP4 increased it. HNP5 was the only position that negatively affected intravertebral pattern symmetry and reduced hindlimb protraction. The stride length was significantly reduced at walk in positions 2, 3, 4 and 5. CONCLUSIONS: There is a significant influence of head/neck position on back kinematics. Elevated head and neck induce extension in the thoracic region and flexion in the lumbar region; besides reducing the sagittal range of motion. Lowered head and neck produces the opposite. A very high position of the head and neck seems to disturb normal kinematics. POTENTIAL RELEVANCE: This study provides quantitative data on the effect of head/neck positions on thoracolumbar motion and may help in discussions on the ethical acceptability of some training methods.
Address Department of Equine Sciences, Utrecht University, Yalelaan 12, 3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402464 Approved no
Call Number Equine Behaviour @ team @ Serial 3702
Permanent link to this record
 

 
Author Peel, J.A.; Peel, M.B.; Davies, H.M.S.
Title The effect of gallop training on hoof angle in thoroughbred racehorses Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 431-434
Keywords (up) Animals; Biomechanics; Hoof and Claw/*anatomy & histology/*physiology; Horses/*physiology; *Physical Conditioning, Animal/adverse effects/methods/physiology; Reproducibility of Results; Running/*physiology; Seasons; Toe Joint/anatomy & histology/physiology
Abstract REASONS FOR PERFORMING STUDY: The economic impact of soundness problems in racehorses is very high and low hoof angle at the toe has been associated with a lack of soundness. However, it is not clear what environmental and management factors might contribute to a low hoof angle. OBJECTIVES: To investigate the hypothesis that the hooves of racehorses become flatter when in gallop training, as well as to determine factors contributing to this trend. METHODS: Weekly hoof measurements were taken with a hoof gauge from 45 Thoroughbred racehorses; 4 Thoroughbred show horses kept in consistent conditions and shod by the same farrier as some of the racehorses; and 6 unshod free-ranging horses. A further 15 horses were measured twice in one day to determine the repeatability of the method. RESULTS: Repeatability coefficients were 0.31 degrees for the left hoof and 0.37 degrees for the right. Racehorses in training showed a significant decrease in hoof angle over time while free ranging horses and show horses did not. Free-ranging horses had a significantly lower angle in winter (wet) compared with summer (dry) in both left (P = 0.040) and right (P = 0.017). Show horses had no significant change in hoof angle. Racehorses that had a period of rest during the experiment (n = 11) showed a decrease in hoof angle during training and an increase over their rest period for both hooves (P = 0.005 for the left hoof, P = 0.0009 for the right). CONCLUSIONS: Training for fast exercise in Thoroughbred racehorses is associated with a reduction in hoof angle and wet pasture conditions may also be associated with a reduced hoof angle in free-ranging horses. Potential relevance: Gallop exercise has a potentially large effect on hoof angle and therefore, a change in angle should be expected to occur in racehorses starting fast exercise work. Hence management of horses with abnormally low hoof angles may require an adaptation to their training regime in order to minimise this effect.
Address Faculty of Veterinary Science, The University of Melbourne, Victoria 3010, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402461 Approved no
Call Number Equine Behaviour @ team @ Serial 4006
Permanent link to this record
 

 
Author McCutcheon, L.J.; Geor, R.J.
Title Influence of training on sweating responses during submaximal exercise in horses Type Journal Article
Year 2000 Publication Journal of Applied Physiology (Bethesda, Md. : 1985) Abbreviated Journal J Appl Physiol
Volume 89 Issue 6 Pages 2463-2471
Keywords (up) Animals; Body Fluids/metabolism; Body Temperature; Body Weight; Environment; Female; Horses/*physiology; Ions; Male; Motor Activity/*physiology; Oxygen Consumption; Physical Conditioning, Animal/*physiology; Sweat/chemistry; Sweating/*physiology; Time Factors
Abstract Sweating responses were examined in five horses during a standardized exercise test (SET) in hot conditions (32-34 degrees C, 45-55% relative humidity) during 8 wk of exercise training (5 days/wk) in moderate conditions (19-21 degrees C, 45-55% relative humidity). SETs consisting of 7 km at 50% maximal O(2) consumption, determined 1 wk before training day (TD) 0, were completed on a treadmill set at a 6 degrees incline on TD0, 14, 28, 42, and 56. Mean maximal O(2) consumption, measured 2 days before each SET, increased 19% [TD0 to 42: 135 +/- 5 (SE) to 161 +/- 4 ml. kg(-1). min(-1)]. Peak sweating rate (SR) during exercise increased on TD14, 28, 42, and 56 compared with TD0, whereas SRs and sweat losses in recovery decreased by TD28. By TD56, end-exercise rectal and pulmonary artery temperature decreased by 0.9 +/- 0.1 and 1.2 +/- 0.1 degrees C, respectively, and mean change in body mass during the SET decreased by 23% (TD0: 10.1 +/- 0.9; TD56: 7.7 +/- 0.3 kg). Sweat Na(+) concentration during exercise decreased, whereas sweat K(+) concentration increased, and values for Cl(-) concentration in sweat were unchanged. Moderate-intensity training in cool conditions resulted in a 1.6-fold increase in sweating sensitivity evident by 4 wk and a 0.7 +/- 0.1 degrees C decrease in sweating threshold after 8 wk during exercise in hot, dry conditions. Altered sweating responses contributed to improved heat dissipation during exercise and a lower end-exercise core temperature. Despite higher SRs for a given core temperature during exercise, decreases in recovery SRs result in an overall reduction in sweat fluid losses but no change in total sweat ion losses after training.
Address Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1. jmccutch@uoguelph.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 8750-7587 ISBN Medium
Area Expedition Conference
Notes PMID:11090603 Approved no
Call Number refbase @ user @ Serial 1922
Permanent link to this record
 

 
Author Andrews, F.M.; Ralston, S.L.; Sommardahl, C.S.; Maykuth, P.L.; Green, E.M.; White, S.L.; Williamson, L.H.; Holmes, C.A.; Geiser, D.R.
Title Weight, water, and cation losses in horses competing in a three-day event Type Journal Article
Year 1994 Publication Journal of the American Veterinary Medical Association Abbreviated Journal J Am Vet Med Assoc
Volume 205 Issue 5 Pages 721-724
Keywords (up) Animals; Body Water/*metabolism; Body Weight/*physiology; Exertion/*physiology; Female; Horses/blood/*metabolism; Male; Physical Conditioning, Animal/physiology; Physical Endurance/physiology; Potassium/*blood; Sodium/*blood
Abstract Body weight of 48 horses competing in a 3-day event was measured the day before the event (baseline), following the dressage phase of the event (day 1), after the endurance phases of the event (day 2), and 18 to 24 hours after the endurance phases (day 3). Plasma sodium and potassium concentrations were measured the evening before, immediately after, and 10 minutes after the endurance phases. Total body water, water loss, and net exchangeable cation loss were then calculated. Body weight and total body water were significantly decreased, compared with baseline values, at all times during the event, and significant water loss was detected. The largest changes were recorded after the endurance phases of the event. Water deficits were still detected 18 to 24 hours after the endurance phases of the event. Mean plasma sodium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, and remained increased after the 10-minute recovery period, presumably because of dehydration. Mean plasma potassium concentration was significantly increased immediately after the endurance phases of the event, compared with concentration measured the evening before, but was not increased after the 10-minute recovery period.
Address Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville 37901-1071
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-1488 ISBN Medium
Area Expedition Conference
Notes PMID:7989242 Approved no
Call Number Equine Behaviour @ team @ Serial 3745
Permanent link to this record
 

 
Author Clayton, H.M.; Lanovaz, J.L.; Schamhardt, H.C.; van Wessum, R.
Title The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot Type Journal Article
Year 1999 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume 30 Issue Pages 218-221
Keywords (up) Animals; Body Weight; Computer Simulation; Gait/*physiology; Horses/*physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/*physiology
Abstract Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.
Address Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824-1314, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:10659255 Approved no
Call Number Equine Behaviour @ team @ Serial 3733
Permanent link to this record
 

 
Author Robert, C.; Valette, J.P.; Denoix, J.M.
Title Correlation between routine radiographic findings and early racing career in French trotters Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 473-478
Keywords (up) Animals; Bone and Bones/anatomy & histology/pathology/*radiography; Carpus, Animal/anatomy & histology/pathology/radiography; Horse Diseases/diagnosis/radiography; Horses/*anatomy & histology/*physiology; Physical Conditioning, Animal/*physiology; Predictive Value of Tests; Sports; Stifle/anatomy & histology/pathology/radiography; Tarsus, Animal/anatomy & histology/pathology/radiography
Abstract REASONS FOR PERFORMING STUDY: The relationship between the presence of radiological abnormalities and subsequent racing performance is controversial. However, as training is expensive and time consuming, it would save time and money to identify subjects with osteo-articular lesions not compatible with a normal racing career on the basis of routine radiographic screenings at yearling age. OBJECTIVES: To evaluate the impact of osteo-articular lesions on racing ability in French Trotters and identify radiographic changes associated with failure in 'qualification', in order to provide objective criteria for selection of horses based on their osteo-articular status. HYPOTHESIS: The influence of radiographic findings (RF) on racing ability depends on their nature, location, clinical relevance and number. METHODS: The limbs of 202 French Trotters were radiographed just before they started training. All the RF were graded according to a standardised protocol depending on their severity. The success in 'qualification' (first race in career of French Trotters) was the criteria used to assess racing ability. Breeders and trainers were questioned about the causes for horses not racing. RESULTS: Overall 113 (55.9%) horses qualified. Osteoarticular lesions were directly responsible for nonqualification in 31% of the horses. Subjects with more than one abnormal RF, with abnormal RF on the fore-, hind-fetlock or proximal tarsus were less likely to qualify. Dorsal modelling in the front fetlock and osteochondrosis of the lateral trochlear ridge of the femur also significantly reduced the qualification rate. CONCLUSIONS: Most RF are compatible with beginning a racing career, but severe RF or multiple abnormal RF significantly compromise future racing career. POTENTIAL RELEVANCE: This study supports the use of routine radiographic programmes for detection of osteoarticular lesions in yearlings. A synthetic radiographic score, based on both the severity and the number of lesions, could be useful for breeders and trainers as complementary information to select their horses.
Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Veterinaire d'Alfort, 7 Av. du Gal de Gaulle, 94704 Maisons-Alfort Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402469 Approved no
Call Number Equine Behaviour @ team @ Serial 4002
Permanent link to this record