toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rands, S.A.; Cowlishaw, G.; Pettifor, R.A.; Rowcliffe, J.M.; Johnstone, R.A. url  doi
openurl 
  Title The emergence of leaders and followers in foraging pairs when the qualities of individuals differ Type Journal Article
  Year 2008 Publication BMC Evolutionary Biology Abbreviated Journal BMC Evol Biol  
  Volume 8 Issue Pages 51  
  Keywords (down) Animals; *Feeding Behavior; *Food Chain; *Models, Biological; *Social Dominance  
  Abstract BACKGROUND: Foraging in groups offers animals a number of advantages, such as increasing their likelihood of finding food or detecting and avoiding predators. In order for a group to remain together, there has to be some degree of coordination of behaviour and movement between its members (which may in some cases be initiated by a decision-making leader, and in other cases may emerge as an underlying property of the group). For example, behavioural synchronisation is a phenomenon where animals within a group initiate and then continue to conduct identical behaviours, and has been characterised for a wide range of species. We examine how a pair of animals should behave using a state-dependent approach, and ask what conditions are likely to lead to behavioural synchronisation occurring, and whether one of the individuals is more likely to act as a leader. RESULTS: The model we describe considers how the energetic gain, metabolic requirements and predation risks faced by the individuals affect measures of their energetic state and behaviour (such as the degree of behavioural synchronisation seen within the pair, and the value to an individual of knowing the energetic state of its colleague). We explore how predictable changes in these measures are in response to changes in physiological requirements and predation risk. We also consider how these measures should change when the members of the pair are not identical in their metabolic requirements or their susceptibility to predation. We find that many of the changes seen in these measures are complex, especially when asymmetries exist between the members of the pair. CONCLUSION: Analyses are presented that demonstrate that, although these general patterns are robust, care needs to be taken when considering the effects of individual differences, as the relationship between individual differences and the resulting qualitative changes in behaviour may be complex. We discuss how these results are related to experimental observations, and how the model and its predictions could be extended.  
  Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. sean.rands@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18282297 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5126  
Permanent link to this record
 

 
Author Marino, L. doi  openurl
  Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
  Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol  
  Volume 59 Issue 1-2 Pages 21-32  
  Keywords (down) Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology  
  Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.  
  Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12097858 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4158  
Permanent link to this record
 

 
Author Hofmeester, T.R.; Cromsigt, J.P.G.M.; Odden, J.; Andrén, H.; Kindberg, J.; Linnell, J.D.C. url  doi
openurl 
  Title Framing pictures: A conceptual framework to identify and correct for biases in detection probability of camera traps enabling multi-species comparison Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume Issue Pages  
  Keywords (down) animal characteristics; detectability; environmental variables; mammal monitoring; reuse of data; trail camera  
  Abstract Abstract Obtaining reliable species observations is of great importance in animal ecology and wildlife conservation. An increasing number of studies use camera traps (CTs) to study wildlife communities, and an increasing effort is made to make better use and reuse of the large amounts of data that are produced. It is in these circumstances that it becomes paramount to correct for the species- and study-specific variation in imperfect detection within CTs. We reviewed the literature and used our own experience to compile a list of factors that affect CT detection of animals. We did this within a conceptual framework of six distinct scales separating out the influences of (a) animal characteristics, (b) CT specifications, (c) CT set-up protocols, and (d) environmental variables. We identified 40 factors that can potentially influence the detection of animals by CTs at these six scales. Many of these factors were related to only a few overarching parameters. Most of the animal characteristics scale with body mass and diet type, and most environmental characteristics differ with season or latitude such that remote sensing products like NDVI could be used as a proxy index to capture this variation. Factors that influence detection at the microsite and camera scales are probably the most important in determining CT detection of animals. The type of study and specific research question will determine which factors should be corrected. Corrections can be done by directly adjusting the CT metric of interest or by using covariates in a statistical framework. Our conceptual framework can be used to design better CT studies and help when analyzing CT data. Furthermore, it provides an overview of which factors should be reported in CT studies to make them repeatable, comparable, and their data reusable. This should greatly improve the possibilities for global scale analyses of (reused) CT data.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1002/ece3.4878 Approved no  
  Call Number Equine Behaviour @ team @ Serial 6518  
Permanent link to this record
 

 
Author Herbert Gintis; Samuel Bowles; Robert Boyd; Ernst Fehr url  doi
openurl 
  Title Explaining altruistic behavior in humans Type Journal Article
  Year 2003 Publication Evolution and Human Behaviour Abbreviated Journal  
  Volume 24 Issue 3 Pages 153-172  
  Keywords (down) Altruism; Reciprocity; Experimental games; Evolution of cooperation  
  Abstract Recent experimental research has revealed forms of human behavior involving interaction among unrelated individuals that have proven difficult to explain in terms of kin or reciprocal altruism. One such trait, strong reciprocity is a predisposition to cooperate with others and to punish those who violate the norms of cooperation, at personal cost, even when it is implausible to expect that these costs will be repaid. We present evidence supporting strong reciprocity as a schema for predicting and understanding altruism in humans. We show that under conditions plausibly characteristic of the early stages of human evolution, a small number of strong reciprocators could invade a population of self-regarding types, and strong reciprocity is an evolutionary stable strategy. Although most of the evidence we report is based on behavioral experiments, the same behaviors are regularly described in everyday life, for example, in wage setting by firms, tax compliance, and cooperation in the protection of local environmental public goods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1090-5138 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ S1090-5138(02)00157-5 Serial 4943  
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J. doi  openurl
  Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
  Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 67 Issue 3 Pages 165-176  
  Keywords (down) Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology  
  Abstract We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.  
  Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16415571 Approved no  
  Call Number refbase @ user @ Serial 358  
Permanent link to this record
 

 
Author Pepperberg, I.M. doi  openurl
  Title In search of king Solomon's ring: cognitive and communicative studies of Grey parrots (Psittacus erithacus) Type Journal Article
  Year 2002 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 59 Issue 1-2 Pages 54-67  
  Keywords (down) *Animal Communication; Animals; Attention/physiology; Cognition/*physiology; Cues; Form Perception/physiology; Humans; Intelligence; Learning/physiology; Male; Models, Psychological; Parrots/*physiology; Psychomotor Performance/physiology; Reward; Social Behavior  
  Abstract During the past 24 years, I have used a modeling technique (M/R procedure) to train Grey parrots to use an allospecific code (English speech) referentially; I then use the code to test their cognitive abilities. The oldest bird, Alex, labels more than 50 different objects, 7 colors, 5 shapes, quantities to 6, 3 categories (color, shape, material) and uses 'no', 'come here', wanna go X' and 'want Y' (X and Y are appropriate location or item labels). He combines labels to identify, request, comment upon or refuse more than 100 items and to alter his environment. He processes queries to judge category, relative size, quantity, presence or absence of similarity/difference in attributes, and show label comprehension. He semantically separates labeling from requesting. He thus exhibits capacities once presumed limited to humans or nonhuman primates. Studies on this and other Greys show that parrots given training that lacks some aspect of input present in M/R protocols (reference, functionality, social interaction) fail to acquire referential English speech. Examining how input affects the extent to which parrots acquire an allospecific code may elucidate mechanisms of other forms of exceptional learning: learning unlikely in the normal course of development but that can occur under certain conditions.  
  Address The MIT Media Lab, Cambridge, Mass. 02139, USA. impepper@media.mit.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12097860 Approved no  
  Call Number refbase @ user @ Serial 579  
Permanent link to this record
 

 
Author Shettleworth, S.J. doi  openurl
  Title Cognitive ecology: field or label? Type Journal Article
  Year 2000 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol  
  Volume 15 Issue 4 Pages 161  
  Keywords (down)  
  Abstract  
  Address Depts of Psychology and Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G3  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5347 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10717686 Approved no  
  Call Number refbase @ user @ Serial 373  
Permanent link to this record
 

 
Author Houston, A.I.; McNamara, J.M. doi  openurl
  Title Fighting for food: a dynamic version of the Hawk-Dove game Type Journal Article
  Year 1988 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 2 Issue 1 Pages 51-64  
  Keywords (down)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 750  
Permanent link to this record
 

 
Author Packer, C.; Pusey, A. E. openurl 
  Title Asymmetric contests in social mammals: respect, manipulation and age-specific aspects Type Book Chapter
  Year 1985 Publication Evolution: Essays in Honour of John Maynard Smith Abbreviated Journal  
  Volume Issue Pages 173-86  
  Keywords (down)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Camebridge University Press Place of Publication Camebridge Editor Greenwood, P.J.; Slatkin, M.;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 819  
Permanent link to this record
 

 
Author Bökönyi, S. isbn  openurl
  Title Horse Type Book Chapter
  Year 1984 Publication Evolution of domesticated animals Abbreviated Journal  
  Volume 18 Issue Pages 162-173  
  Keywords (down)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons Place of Publication Hoboken, NJ Editor Manson  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Product Details * Hardcover * Publisher: John Wiley & Sons (May 1986) * ISBN-10: 047020 Medium  
  Area Expedition Conference  
  Notes from Professor Hans Klingels Equine Reference List Approved no  
  Call Number Serial 949  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print