|   | 
Details
   web
Records
Author Punzo, F.; Ludwig, L.
Title Contact with maternal parent and siblings affects hunting behavior, learning, and central nervous system development in spiderlings of Hogna carolinensis (Araeneae: Lycosidae) Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 2 Pages 63-70
Keywords (up) Animals; Central Nervous System/*growth & development; Female; *Learning; Male; *Predatory Behavior; Social Isolation; *Spiders
Abstract The purpose of this study was to determine the effects of early experience (rearing conditions) on the central nervous system (CNS) and behavior of spiderlings of Hogna carolinensis (Lycosidae). We were interested in whether or not spiderlings that were allowed to remain in contact with their maternal parent and siblings (enriched condition, EC) would exhibit differences in CNS development or subsequent behavior when compared with those reared in isolation (improverished condition, IC). Spiderlings emerged from their egg sacs and climbed onto the dorsal surface of their mother's abdomen where they remained until their yolk supply was depleted (5 days). They dispersed on day 6 after emergence. We compared the ability of 16-day-old EC and IC spiderlings to capture prey in a linear runway and to learn a complex maze (spatial learning). We also compared certain aspects of CNS development (brain weight, total number of brain cells, volume of central body and protocerebral neuropil) in EC and IC spiderlings. Results indicated that EC subjects are more efficient at capturing moving prey (crickets) and exhibited improved performance (significantly fewer blind alley errors) in the maze. The volume of the protocerebral neuropil in 6-day-old EC animals increased 30% over a 5-day period after emergence as compared to IC animals of the same age. The volume of the central body of EC animals increased 34.8% over the same time period. On day 6 after emergence, the weight of the protocerebrum was significantly greater in EC versus IC subjects. There were no significant effects of rearing condition (EC vs IC) or age (1- and 6-day-old spiderlings) on the total number of nerve cells in the protocerebrum, suggesting that the difference in protocerebral weight was due primarily to differences in supporting glial tissues and neuropil matrix. In conclusion, the data suggest that early contact with the maternal parent and siblings is of vital importance to CNS development in lycosid spiderlings and can influence the capacity for spatial learning as well as the ability to capture prey.
Address Box 5F-Dept. of Biology, University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606, USA. fpunzo@ut.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12150037 Approved no
Call Number Equine Behaviour @ team @ Serial 2607
Permanent link to this record
 

 
Author Hirsch, B.T.
Title Costs and benefits of within-group spatial position: a feeding competition model Type Journal Article
Year 2007 Publication The Quarterly review of biology Abbreviated Journal Q Rev Biol
Volume 82 Issue 1 Pages 9-27
Keywords (up) Animals; Competitive Behavior/*physiology; Dominance-Subordination; Feeding Behavior/*physiology/*psychology; Population Dynamics; Predatory Behavior/*physiology
Abstract An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.
Address Department of Anthropology, Stony Brook University Stony Brook, New York 11794, USA. BTHIRSCH@IC.SUNYSB.EDU
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-5770 ISBN Medium
Area Expedition Conference
Notes PMID:17354992 Approved no
Call Number refbase @ user @ Serial 803
Permanent link to this record
 

 
Author Burke, D.; Cieplucha, C.; Cass, J.; Russell, F.; Fry, G.
Title Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus) Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 2 Pages 79-84
Keywords (up) Animals; Echidna/*psychology; Ecology; Female; *Learning; *Memory; *Predatory Behavior; Reinforcement (Psychology)
Abstract Numerous previous investigators have explained species differences in spatial memory performance in terms of differences in foraging ecology. In three experiments we attempted to extend these findings by examining the extent to which the spatial memory performance of echidnas (or “spiny anteaters”) can be understood in terms of the spatio-temporal distribution of their prey (ants and termites). This is a species and a foraging situation that have not been examined in this way before. Echidnas were better able to learn to avoid a previously rewarding location (to “win-shift”) than to learn to return to a previously rewarding location (to “win-stay”), at short retention intervals, but were unable to learn either of these strategies at retention intervals of 90 min. The short retention interval results support the ecological hypothesis, but the long retention interval results do not.
Address Department of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia. darren_burke@uow.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12150039 Approved no
Call Number Equine Behaviour @ team @ Serial 2605
Permanent link to this record
 

 
Author Jackson, R.R.; Pollard, S.D.; Li, D.; Fijn, N.
Title Interpopulation variation in the risk-related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 4 Pages 215-223
Keywords (up) Animals; Female; Male; Mental Processes; *Predatory Behavior; Risk Factors; *Spiders
Abstract The extent to which decision-making processes are constrained in animals with small brains is poorly understood. Arthropods have brains much smaller and simpler than those of birds and mammals. This raises questions concerning limitations on how intricate the decision-making processes might be in arthropods. At Los Banos in the Philippines, Scytodes pallidus is a spitting spider that specialises in preying on jumping spiders, and Portia labiata is a jumping spider that preys on S. pallidus. Scytodid spit comes from the mouth, and egg-carrying females are less dangerous than eggless scytodids because the female uses her chelicerae to hold her eggs. Held eggs block her mouth, and she has to release them before she can spit. The Los Banos P. labiata sometimes adjusts its tactics depending on whether the scytodid encountered is carrying eggs or not. When pursuing eggless scytodids, the Los Banos P. labiata usually takes detour routes that enable it to close in from behind (away from the scytodid's line of fire). However, when pursuing egg-carrying scytodids, the Los Banos P. labiata sometimes takes faster direct routes to reach these safer prey. The Los Banos P. labiata apparently makes risk-related adjustments specific to whether scytodids are carrying eggs, but P. labiata from Sagada in the Philippines (allopatric to Scytodes) fails to make comparable risk-related adjustments.
Address Department of Zoology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12461599 Approved no
Call Number Equine Behaviour @ team @ Serial 2591
Permanent link to this record