toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chappell, J.; Kacelnik, A. doi  openurl
  Title Selection of tool diameter by New Caledonian crows Corvus moneduloides Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 2 Pages 121-127  
  Keywords (down) Animals; Behavior, Animal; *Choice Behavior; Discrimination Learning; *Feeding Behavior; Female; Functional Laterality; *Manufactured Materials; *Plant Leaves; *Problem Solving; *Songbirds; Technology  
  Abstract One important element of complex and flexible tool use, particularly where tool manufacture is involved, is the ability to select or manufacture appropriate tools anticipating the needs of any given task-an ability that has been rarely tested in non-primates. We examine aspects of this ability in New Caledonian crows-a species known to be extraordinary tool users and manufacturers. In a 2002 study, Chappell and Kacelnik showed that these crows were able to select a tool of the appropriate length for a task among a set of different lengths, and in 2002, Weir, Chappell and Kacelnik showed that New Caledonian crows were able to shape unfamiliar materials to create a usable tool for a specific task. Here we examine their handling of tool diameter. In experiment 1, we show that when facing three loose sticks that were usable as tools, they preferred the thinnest one. When the three sticks were presented so that one was loose and the other two in a bundle, they only disassembled the bundle when their preferred tool was tied. In experiment 2, we show that they manufacture, and modify during use, a tool of a suitable diameter from a tree branch, according to the diameter of the hole through which the tool will have to be inserted. These results add to the developing picture of New Caledonian crows as sophisticated tool users and manufacturers, having an advanced level of folk physics.  
  Address Department of Zoology, South Parks Road, OX1 3PS, Oxford, UK. jackie.chappell@zoo.ox.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15069612 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2528  
Permanent link to this record
 

 
Author Call, J. doi  openurl
  Title A fish-eye lens for comparative studies: broadening the scope of animal cognition Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 1 Pages 15-16  
  Keywords (down) Animals; Behavior, Animal/physiology; Cognition/*physiology; Fishes/*physiology; Species Specificity  
  Abstract ? is the article no longer available?  
  Address call@eva.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11957396 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2616  
Permanent link to this record
 

 
Author Bouchard, J.; Goodyer, W.; Lefebvre, L. doi  openurl
  Title Social learning and innovation are positively correlated in pigeons (Columba livia) Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 259-266  
  Keywords (down) Animals; Behavior, Animal/*physiology; Columbidae/*physiology; *Learning; *Problem Solving  
  Abstract When animals show both frequent innovation and fast social learning, new behaviours can spread more rapidly through populations and potentially increase rates of natural selection and speciation, as proposed by A.C. Wilson in his behavioural drive hypothesis. Comparative work on primates suggests that more innovative species also show more social learning. In this study, we look at intra-specific variation in innovation and social learning in captive wild-caught pigeons. Performances on an innovative problem-solving task and a social learning task are positively correlated in 42 individuals. The correlation remains significant when the effects of neophobia on the two abilities are removed. Neither sex nor dominance rank are associated with performance on the two tasks. Free-flying flocks of urban pigeons are able to solve the innovative food-finding problem used on captive birds, demonstrating it is within the range of their natural capacities. Taken together with the comparative literature, the positive correlation between innovation and social learning suggests that the two abilities are not traded-off.  
  Address Department of Biology, McGill University, 1205, Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17205290 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2425  
Permanent link to this record
 

 
Author Tebbich, S.; Seed, A.M.; Emery, N.J.; Clayton, N.S. doi  openurl
  Title Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 225-231  
  Keywords (down) Animals; Behavior, Animal/*physiology; Cognition/*physiology; Crows/*physiology; Female; Male; Problem Solving/*physiology  
  Abstract The trap-tube problem is used to assess whether an individual is able to foresee the outcome of its actions. To solve the task, an animal must use a tool to push a piece of food out of a tube, which has a trap along its length. An animal may learn to avoid the trap through a rule based on associative processes, e.g. using the distance of trap or food as a cue, or by understanding relations between cause and effect. This task has been used to test physical cognition in a number of tool-using species, but never a non-tool-user. We developed an experimental design that enabled us to test non-tool-using rooks, Corvus frugilegus. Our modification of the task removed the cognitive requirements of active tool use but still allowed us to test whether rooks can solve the trap-tube problem, and if so how. Additionally, we developed two new control tasks to determine whether rooks were able to transfer knowledge to similar, but novel problems, thus revealing more about the mechanisms involved in solving the task. We found that three out of seven rooks solved the modified trap-tube problem task, showing that the ability to solve the trap-tube problem is not restricted to tool-using animals. We found no evidence that the birds solved the task using an understanding of its causal properties, given that none of the birds passed the novel transfer tasks.  
  Address Department of Experimental Psychology, University of Cambridge, Cambridge, CB2 3EB, UK. st281@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17171360 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2429  
Permanent link to this record
 

 
Author Lea, S.E.G.; Goto, K.; Osthaus, B.; Ryan, C.M.E. doi  openurl
  Title The logic of the stimulus Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 247-256  
  Keywords (down) Animals; Behavior, Animal/*physiology; Cognition/*physiology; Columbidae; Comprehension/physiology; Dogs; Humans; *Logic; Pattern Recognition, Visual/physiology; Perception/*physiology; Problem Solving/*physiology; Species Specificity  
  Abstract This paper examines the contribution of stimulus processing to animal logics. In the classic functionalist S-O-R view of learning (and cognition), stimuli provide the raw material to which the organism applies its cognitive processes-its logic, which may be taxon-specific. Stimuli may contribute to the logic of the organism's response, and may do so in taxon-specific ways. Firstly, any non-trivial stimulus has an internal organization that may constrain or bias the way that the organism addresses it; since stimuli can only be defined relative to the organism's perceptual apparatus, and this apparatus is taxon-specific, such constraints or biases will often be taxon-specific. Secondly, the representation of a stimulus that the perceptual system builds, and the analysis it makes of this representation, may provide a model for the synthesis and analysis done at a more cognitive level. Such a model is plausible for evolutionary reasons: perceptual analysis was probably perfected before cognitive analysis in the evolutionary history of the vertebrates. Like stimulus-driven analysis, such perceptually modelled cognition may be taxon-specific because of the taxon-specificity of the perceptual apparatus. However, it may also be the case that different taxa are able to free themselves from the stimulus logic, and therefore apply a more abstract logic, to different extents. This thesis is defended with reference to two examples of cases where animals' cognitive logic seems to be isomorphic with perceptual logic, specifically in the case of pigeons' attention to global and local information in visual stimuli, and dogs' failure to comprehend means-end relationships in string-pulling tasks.  
  Address School of Psychology, Washington Singer Laboratories, University of Exeter, Exeter, EX4 4QG, United Kingdom. s.e.g.lea@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909234 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2450  
Permanent link to this record
 

 
Author Clara, E.; Regolin, L.; Vallortigara, G.; Rogers, L. doi  openurl
  Title Perception of the stereokinetic illusion by the common marmoset (Callithrix jacchus) Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 135-140  
  Keywords (down) Animals; Behavior, Animal/*physiology; Callithrix/*physiology; Female; Male; *Optical Illusions; Pattern Recognition, Visual/*physiology  
  Abstract Stereokinetic illusions have never been investigated in non-human primates, nor in other mammalian species. These illusions consist in the perception of a 3D solid object when certain 2D stimuli are rotated slowly in the plane perpendicular to the line of sight. The ability to perceive the stereokinetic illusion was investigated in the common marmoset (Callithrix jacchus). Four adult marmosets were trained to discriminate between a solid cylinder and a solid cone for food reward. Once learning criterion was reached, the marmosets were tested in sets of eight probe trials in which the two solid objects used at training were replaced by two rotating 2D stimuli. Only one of these stimuli produced, at least to the human observer, the stereokinetic illusion corresponding to the solid object previously reinforced. At test, the general behaviour and the total time spent by the marmosets observing each stimulus were recorded. The subjects stayed longer near the stimulus producing the stereokinetic illusion corresponding to the solid object reinforced at training than they did near the illusion corresponding to the previously non-rewarded stimulus. Hence, the common marmosets behaved as if they could perceive stereokinetic illusions.  
  Address Centre for Neuroscience and Animal Behaviour, University of New England, Armidale, NSW, 2351, Australia. elena.clara@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16924457 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2445  
Permanent link to this record
 

 
Author Yamazaki, Y.; Shinohara, N.; Watanabe, S. doi  openurl
  Title Visual discrimination of normal and drug induced behavior in quails (Coturnix coturnix japonica) Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 2 Pages 128-132  
  Keywords (down) Animals; Behavior, Animal/*drug effects; Classification; Coturnix/*physiology; *Discrimination Learning; *Generalization (Psychology); Ketamine/pharmacology; Male; Methamphetamine/pharmacology; *Pattern Recognition, Visual; Video Recording; Visual Perception  
  Abstract The ability to discriminate the physical states of others could be an adaptive behavior, especially for social animals. For example, the ability to discriminate illness behavior would be helpful for avoiding spoiled foods. We report on an experiment with Japanese quails testing whether these birds can discriminate the physical states of conspecifics. The quails were trained to discriminate between moving video images of quails injected with psychoactive drugs and those in a normal (not injected) condition. Methamphetamine (stimulant) or ketamine (anesthetic) were used to produce drug-induced behaviors in conspecifics. The former induced hyperactive behavior and the latter hypoactive behavior. The subject quails could learn the discrimination and showed generalization to novel images of the drug-induced behaviors. They did not, however, show discriminative behavior according to the type and dosage of the drugs. Thus, they categorized the behavior not on the basis of degree of activity, but on the basis of abnormality.  
  Address Biopsychologie, Institut fur Kognitive Neurowissenschaft, Fakultat fur Psychologie, Ruhr-Universitat Bochum, 44780 Bochum, Germany. yumyam@bio.psy.ruhr-uni-bochum.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15069613 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2527  
Permanent link to this record
 

 
Author Benard, J.; Stach, S.; Giurfa, M. doi  openurl
  Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 257-270  
  Keywords (down) Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology  
  Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.  
  Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909238 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2446  
Permanent link to this record
 

 
Author Cheng, K.; Wignall, A.E. doi  openurl
  Title Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 2 Pages 141-150  
  Keywords (down) Animals; Bees/*physiology; Choice Behavior/physiology; *Cues; Memory/*physiology; Perceptual Masking/physiology; Space Perception/*physiology; Spatial Behavior/*physiology  
  Abstract Five experiments on honeybees examined how the learning of a second task interferes with what was previously learned. Free flying bees were tested for landmark-based memory in variations on a paradigm of retroactive interference. Bees first learned Task 1, were tested on Task 1 (Test 1), then learned Task 2, and were tested again on Task 1 (Test 2). A 60-min delay (waiting in a box) before Test 2 caused no performance decrements. If the two tasks had conflicting response requirements, (e.g., target right of a green landmark in Task 1 and left of a blue landmark in Task 2), then a strong decrement on Test 2 was found (retroactive interference effect). When response competition was minimised during training or testing, however, the decrement on Test 2 was small or nonexistent. The results implicate response competition as a major contributor to the retroactive interference effect. The honeybee seems to hold on to memories; new memories do not wipe out old ones.  
  Address Centre for the Integrative Study of Animal Behaviour and Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia. ken@galliform.bhs.mq.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16374626 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2477  
Permanent link to this record
 

 
Author Naug, D.; Arathi, H.S. doi  openurl
  Title Sampling and decision rules used by honey bees in a foraging arena Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 2 Pages 117-124  
  Keywords (down) Animals; Bees/*physiology; *Choice Behavior; Cooperative Behavior; *Feeding Behavior; Flight, Animal  
  Abstract Animals must continuously choose among various available options to exploit the most profitable resource. They also need to keep themselves updated about the values of all available options, since their relative values can change quickly due to depletion or exploitation by competitors. While the sampling and decision rules by which foragers profitably exploit a flower patch have attracted a great deal of attention in theory and experiments with bumble bees, similar rules for honey bee foragers, which face similar foraging challenges, are not as well studied. By presenting foragers of the honey bee Apis cerana with choice tests in a foraging arena and recording their behavior, we investigate possible sampling and decision rules that the foragers use to choose one option over another and to track other options. We show that a large part of the sampling and decision-making process of a foraging honey bee can be explained by decomposing the choice behavior into dichotomous decision points and incorporating the cost of sampling. The results suggest that a honey bee forager, by using a few simple rules as part of a Bayesian inference process, is able to effectively deal with the complex task of successfully exploiting foraging patches that consist of dynamic and multiple options.  
  Address Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. dhruba@lamar.colostate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16941157 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2441  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print