toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Billat, L.V. url  openurl
  Title Interval Training for Performance: A Scientific and Empirical Practice: Special Recommendations for Middle- and Long-Distance Running. Part I: Aerobic Interval Training Type Journal Article
  Year 2001 Publication Sports Medicine Abbreviated Journal Sports Med  
  Volume 31 Issue 1 Pages 13-31  
  Keywords (up) Aerobic exercise; Exercise performance; Training  
  Abstract This article traces the history of scientific and empirical interval training. Scientific research has shed some light on the choice of intensity, work duration and rest periods in so-called 'interval training'. Interval training involves repeated short to long bouts of rather high intensity exercise (equal or superior to maximal lactate steady-state velocity) interspersed with recovery periods (light exercise or rest). Interval training was first described by Reindell and Roskamm and was popularised in the 1950s by the Olympic champion, Emil Zatopek. Since then middle- and long- distance runners have used this technique to train at velocities close to their own specific competition velocity. In fact, trainers have used specific velocities from 800 to 5000m to calibrate interval training without taking into account physiological markers. However, outside of the competition season it seems better to refer to the velocities associated with particular physiological responses in the range from maximal lactate steady state to the absolute maximal velocity. The range of velocities used in a race must be taken into consideration, since even world records are not run at a constant pace. Copyright 2001 Adis International  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0112-1642 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ 00007256-200131010-00002 Serial 5002  
Permanent link to this record
 

 
Author Kalin, N.H.; Shelton, S.E. openurl 
  Title Nonhuman primate models to study anxiety, emotion regulation, and psychopathology Type Journal Article
  Year 2003 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1008 Issue Pages 189-200  
  Keywords (up) Affect/*physiology; Amygdala/blood supply; Animals; Anxiety/genetics/*psychology; Brain/*blood supply; Brain Stem/blood supply; Carrier Proteins/genetics; Electroencephalography; *Inhibition (Psychology); Macaca mulatta; Membrane Glycoproteins/genetics; *Membrane Transport Proteins; *Nerve Tissue Proteins; Prefrontal Cortex/blood supply; Serotonin Plasma Membrane Transport Proteins; Social Environment; Temperament; Tomography, Emission-Computed  
  Abstract This paper demonstrates that the rhesus monkey provides an excellent model to study mechanisms underlying human anxiety and fear and emotion regulation. In previous studies with rhesus monkeys, stable, brain, endocrine, and behavioral characteristics related to individual differences in anxiety were found. It was suggested that, when extreme, these features characterize an anxious endophenotype and that these findings in the monkey are particularly relevant to understanding adaptive and maladaptive anxiety responses in humans. The monkey model is also relevant to understanding the development of human psychopathology. For example, children with extremely inhibited temperament are at increased risk to develop anxiety disorders, and these children have behavioral and biological alterations that are similar to those described in the monkey anxious endophenotype. It is likely that different aspects of the anxious endophenotype are mediated by the interactions of limbic, brain stem, and cortical regions. To understand the brain mechanisms underlying adaptive anxiety responses and their physiological concomitants, a series of studies in monkeys lesioning components of the neural circuitry (amygdala, central nucleus of the amygdala and orbitofrontal cortex) hypothesized to play a role are currently being performed. Initial findings suggest that the central nucleus of the amygdala modulates the expression of behavioral inhibition, a key feature of the endophenotype. In preliminary FDG positron emission tomography (PET) studies, functional linkages were established between the amygdala and prefrontal cortical regions that are associated with the activation of anxiety.  
  Address Department of Psychiatry, University of Wisconsin-Madison Medical School, 6001 Research Park Boulevard, Madison, WI 53711, USA. nkalin@facstaff.wisc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14998885 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4133  
Permanent link to this record
 

 
Author Panksepp, J. doi  openurl
  Title Affective consciousness: Core emotional feelings in animals and humans Type Journal Article
  Year 2005 Publication Consciousness and Cognition Abbreviated Journal Conscious Cogn  
  Volume 14 Issue 1 Pages 30-80  
  Keywords (up) Affect/*physiology; Animals; Bonding, Human-Pet; Brain/*physiology; Consciousness/*physiology; Fear; Humans; Limbic System/physiology; Social Behavior; Species Specificity; Unconscious (Psychology)  
  Abstract The position advanced in this paper is that the bedrock of emotional feelings is contained within the evolved emotional action apparatus of mammalian brains. This dual-aspect monism approach to brain-mind functions, which asserts that emotional feelings may reflect the neurodynamics of brain systems that generate instinctual emotional behaviors, saves us from various conceptual conundrums. In coarse form, primary process affective consciousness seems to be fundamentally an unconditional “gift of nature” rather than an acquired skill, even though those systems facilitate skill acquisition via various felt reinforcements. Affective consciousness, being a comparatively intrinsic function of the brain, shared homologously by all mammalian species, should be the easiest variant of consciousness to study in animals. This is not to deny that some secondary processes (e.g., awareness of feelings in the generation of behavioral choices) cannot be evaluated in animals with sufficiently clever behavioral learning procedures, as with place-preference procedures and the analysis of changes in learned behaviors after one has induced re-valuation of incentives. Rather, the claim is that a direct neuroscientific study of primary process emotional/affective states is best achieved through the study of the intrinsic (“instinctual”), albeit experientially refined, emotional action tendencies of other animals. In this view, core emotional feelings may reflect the neurodynamic attractor landscapes of a variety of extended trans-diencephalic, limbic emotional action systems-including SEEKING, FEAR, RAGE, LUST, CARE, PANIC, and PLAY. Through a study of these brain systems, the neural infrastructure of human and animal affective consciousness may be revealed. Emotional feelings are instantiated in large-scale neurodynamics that can be most effectively monitored via the ethological analysis of emotional action tendencies and the accompanying brain neurochemical/electrical changes. The intrinsic coherence of such emotional responses is demonstrated by the fact that they can be provoked by electrical and chemical stimulation of specific brain zones-effects that are affectively laden. For substantive progress in this emerging research arena, animal brain researchers need to discuss affective brain functions more openly. Secondary awareness processes, because of their more conditional, contextually situated nature, are more difficult to understand in any neuroscientific detail. In other words, the information-processing brain functions, critical for cognitive consciousness, are harder to study in other animals than the more homologous emotional/motivational affective state functions of the brain.  
  Address Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA. jpankse@bgnet.bgsu.ed  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1053-8100 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15766890 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4159  
Permanent link to this record
 

 
Author Larose, C.; Richard-Yris, M.-A.; Hausberger, M.; Rogers, L.J. doi  openurl
  Title Laterality of horses associated with emotionality in novel situations Type Journal Article
  Year 2006 Publication Laterality Abbreviated Journal Laterality  
  Volume 11 Issue 4 Pages 355-367  
  Keywords (up) Affect/*physiology; Animals; Brain/*physiology; Female; Functional Laterality/*physiology; Horses; Male; *Social Behavior; *Social Environment  
  Abstract We have established that lateral biases are characteristic of visual behaviour in 65 horses. Two breeds, Trotters and French Saddlebreds aged 2 to 3, were tested on a novel object test. The main finding was a significant correlation between emotionality index and the eye preferred to view the novel stimulus: the higher the emotionality, the more likely that the horse looked with its left eye. The less emotive French Saddlebreds, however, tended to glance at the object using the right eye, a tendency that was not found in the Trotters, although the emotive index was the same for both breeds. The youngest French Saddlebreds did not show this trend. These results are discussed in relation to the different training practices for the breeds and broader findings on lateralisation in different species.  
  Address Universite de Rennes 1, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1357-650X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16754236 Approved no  
  Call Number Equine Behaviour @ team @ room B 3.029 Serial 1826  
Permanent link to this record
 

 
Author Rogers, L.J. url  doi
openurl 
  Title Evolution of hemispheric specialization: advantages and disadvantages Type Journal Article
  Year 2000 Publication Brain and Language Abbreviated Journal Brain Lang  
  Volume 73 Issue 2 Pages 236-253  
  Keywords (up) Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology  
  Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.  
  Address Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10856176 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4621  
Permanent link to this record
 

 
Author Hrdy, S.B. openurl 
  Title Male-male competition and infanticide among the langurs (Presbytis entellus) of Abu, Rajasthan Type Journal Article
  Year 1974 Publication Folia Primatologica; International Journal of Primatology Abbreviated Journal Folia Primatol (Basel)  
  Volume 22 Issue 1 Pages 19-58  
  Keywords (up) Aggression; Animals; Animals, Newborn; Coitus; *Competitive Behavior; Estrus; Feeding Behavior; Female; *Haplorhini; Homing Behavior; Humans; India; Infanticide; Leadership; Male; Maternal Behavior; Population Density; Pregnancy; Rain; Seasons; Sex Factors; Sexual Behavior, Animal; Social Behavior; Temperature; Vocalization, Animal  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-5713 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:4215710 Approved no  
  Call Number Serial 2051  
Permanent link to this record
 

 
Author Drummond, H. doi  openurl
  Title Dominance in vertebrate broods and litters Type Journal Article
  Year 2006 Publication Quarterly Review of Biology Abbreviated Journal  
  Volume 81 Issue 1 Pages 3-32  
  Keywords (up) Aggression; Assessment; Dominance; Individual recognition; Sibling conflict; Trained losing  
  Abstract Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as “aggression-submission,” “aggression-resistance, ” “aggression-aggression,” “aggression-avoidance,” “rotating dominance,” and “flock dominance.” These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the “site-specific dominance” (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. Copyright © 2006 by The University of Chicago. All rights reserved.  
  Address Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, 04510 D.F., Mexico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 20; Export Date: 23 October 2008; Source: Scopus Approved no  
  Call Number Equine Behaviour @ team @ Serial 4559  
Permanent link to this record
 

 
Author Lingle, S.; Rendall, D.; Wilson, W.F.; DeYoung, R.W.; Pellis, S.M. url  doi
openurl 
  Title Altruism and recognition in the antipredator defence of deer: 2. Why mule deer help nonoffspring fawns Type Journal Article
  Year 2007 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 73 Issue 5 Pages 907-916  
  Keywords (up) aggressive defence; altruism; behavioural discrimination; cooperation; motivational constraint; mule deer; Odocoileus hemionus; Odocoileus virginianus; recognition error; white-tailed deer  
  Abstract Both white-tailed deer, Odocoileus virginianus, and mule deer, O. hemionus, females defend fawns against coyotes, Canis latrans, but only mule deer defend nonoffspring conspecific and heterospecific fawns. During a predator attack, females may have to decide whether to defend a fawn while having imperfect information on its identity obtained from hearing a few distress calls. Although imperfect recognition can influence altruistic behaviour, few empirical studies have considered this point when testing functional explanations for altruism. We designed a series of playback experiments with fawn distress calls to test alternative hypotheses (by-product of parental care, kin selection, reciprocal altruism) for the mule deer's defence of nonoffspring, specifically allowing for the possibility that females mistake these fawns for their own. White-tailed deer females approached the speaker only when distress calls of white-tailed deer fawns were played and when their own fawn was hidden, suggesting that fawn defence was strictly a matter of parental care in this species. In contrast, mule deer females responded similarly and strongly, regardless of the caller's identity, the female's reproductive state (mother or nonmother) or the presence of their own offspring. The failure of mule deer females to adjust their responses to these conditions suggests that they do not defend nonoffspring because they mistake them for their own fawns. The lack of behavioural discrimination also suggests that kin selection, reciprocal altruism and defence of the offspring's area are unlikely to explain the mule deer's defence of nonoffspring. We identify causal and functional questions that still need to be addressed to understand why mule deer defend fawns so indiscriminately.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4211  
Permanent link to this record
 

 
Author Valderrabano-Ibarra, C.; Brumon, I.; Drummond, H. url  doi
openurl 
  Title Development of a linear dominance hierarchy in nestling birds Type Journal Article
  Year 2007 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.  
  Volume 74 Issue 6 Pages 1705-1714  
  Keywords (up) agonistic behaviour; blue-footed booby; dominance; hatch asynchrony; hierarchy; Sula nebouxii; trained winning  
  Abstract Theoreticians propose that trained winning and losing are important processes in creating linear animal dominance hierarchies, and experiments have shown that both processes can occur in animals, but their actual roles in creating natural hierarchies are unknown. We described agonism in 18 broods of three blue-footed boobies, Sula nebouxii, a species for which trained winning and losing have been demonstrated, to infer how these processes generate and maintain a natural hierarchy. Ranks in the linear hierarchy that emerged in every brood were initially assigned by asymmetries in age, size and maturity, which led to differences between broodmates in levels of expressed and received aggression and, consequently, to differences in the training of their aggressiveness and submissiveness. Later, ranks appeared to be maintained by the chicks' acquired aggressive and submissive tendencies combined with ongoing effects of persisting differences in size and maturity. Our results suggest that trained winning and trained losing are important in the construction of booby hierarchies but that these two axes of learning are largely independent. Increase in submissiveness occurs over a period of about 10-20 days, and the level of submissiveness reached varies with the amount of aggression received. After training, submissiveness is apparently maintained by a lower level of aggression and increasing use of threats. Threats become increasingly effective as chicks age, but are never as effective as attacks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4318  
Permanent link to this record
 

 
Author Ahrendt, L.P.; Labouriau, R.; Malmkvist, J.; Nicol, C.J.; Christensen, J.W. url  doi
openurl 
  Title Development of a standard test to assess negative reinforcement learning in horses Type Journal Article
  Year 2015 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 169 Issue Pages 38-42  
  Keywords (up) Algometry; Horse behaviour; Learning performance; Operant conditioning; Pressure-release; Horse training  
  Abstract Most horses are trained by negative reinforcement. Currently, however, no standardised test for evaluating horses' negative reinforcement learning ability is available. The aim of this study was to develop an objective test to investigate negative reinforcement learning in horses. Twenty-four Icelandic horses (3 years old) were included in this study. The horses were tested in a pressure-release task on three separate days with 10, 7 and 5 trials on each side, respectively. Each trial consisted of pressure being applied on the hindquarter with an algometer. The force of the pressure was increased until the horse moved laterally away from the point of pressure. There was a significant decrease in required force over trials on the first test day (P<0.001), but not the second and third day. The intercepts on days 2 and 3 differed significantly from day 1 (P<0.001), but not each other. Significantly stronger force was required on the right side compared to the left (P<0.001), but there was no difference between first and second side tested (P=0.56). Individual performance was evaluated by median-force and the change in force over trials on the first test day. These two measures may explain different characteristics of negative reinforcement learning. In conclusion, this study presents a novel, standardised test for evaluating negative reinforcement learning ability in horses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6650  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print