|   | 
Details
   web
Records
Author Clayton, H.M.
Title The extended canter: a comparison of some kinematic variables in horses trained for dressage and for racing Type Journal Article
Year 1993 Publication Acta Anatomica Abbreviated Journal Acta Anat (Basel)
Volume 146 Issue 2-3 Pages 183-187
Keywords (up) Animal Husbandry; Animals; *Gait; Horses/*physiology; *Physical Conditioning, Animal; *Sports
Abstract This study was designed to test the hypothesis that there is no significant difference in selected temporal and linear stride variables of the extended canter in horses bred and trained for dressage or racing. Nine advanced-level dressage horses and 7 Thoroughbred racehorses were filmed at a frame rate of 200 Hz at an extended canter on a sand track. Two strides were recorded per trial, and each horse performed 6 or 7 trials. Temporal and linear data were determined from the films, and descriptive statistics (mean, SD) were calculated. Strides were selected for analysis on the basis of having a velocity in the range of 6.0-7.0 m/s, and multivariate analysis of variance was used to detect significant differences in the stride kinematics of horses trained for the two sports (p < or = 0.01). The average velocity of the dressage horses was 6.37 m/s, compared with 6.40 m/s for the racehorses. There were no significant differences between the two groups in velocity, stride duration, stride length or the distances between limb placements. The stance durations of all four limbs and the overlaps between them were longer, whereas the duration of the suspension phase was shorter in the dressage horses than in the racehorses (p < or = 0.01). The time between impacts of the diagonal limb pair was close to zero in both groups, with individual horses showing some variability in the order of placement of the diagonal limb pair. However, the sequence of footfalls was not significantly different between the two groups (p < or = 0.01).
Address Department of Veterinary Anatomy, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-5180 ISBN Medium
Area Expedition Conference
Notes PMID:8470464 Approved no
Call Number Equine Behaviour @ team @ Serial 3751
Permanent link to this record
 

 
Author Deuel, N.R.; Lawrence, L.M.
Title Laterality in the gallop gait of horses Type Journal Article
Year 1987 Publication Journal of biomechanics Abbreviated Journal J Biomech
Volume 20 Issue 6 Pages 645-649
Keywords (up) Animals; *Functional Laterality; *Gait; Horses/*physiology; Kinesis
Abstract Bilateral asymmetry in gallop stride limb contact patterns of four Quarter Horse fillies was documented by high-speed cinematography. Horses were filmed with rider by two cameras simultaneously while galloping along a straightaway. Even though signaled for each gallop lead an equivalent number of times, horses frequently switched leads, selecting the left lead nearly twice as often as the right. Velocities and stride lengths were greater for the left lead than the right, but stride frequencies did not differ between leads. Velocity effects were partitioned out in limb contact data analysis to enable the determination of persistent gallop stride asymmetries. The contact duration for the trailing (right) fore limb on the left lead exceeded the contact duration for the trailing (left) fore limb on the right lead. Selecting the right fore limb as the trailing fore limb may have allowed horses to use it to withstand the greater stresses and caused them to preferentially gallop with the left fore limb leading. Laterality may have an important influence on equine gallop motion patterns and thereby influence athletic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9290 ISBN Medium
Area Expedition Conference
Notes PMID:3611140 Approved no
Call Number refbase @ user @ Serial 528
Permanent link to this record
 

 
Author Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords (up) Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record
 

 
Author Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S.
Title Kinematic evaluation of the back in the sport horse with back pain Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 707-711
Keywords (up) Animals; Back/*physiology; Back Pain/diagnosis/physiopathology/*veterinary; Biomechanics; Exercise Test/veterinary; Gait/*physiology; Horse Diseases/diagnosis/*physiopathology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Lumbar Vertebrae/physiology; Range of Motion, Articular; Stress, Mechanical; Thoracic Vertebrae/physiology; Weight-Bearing
Abstract REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.
Address Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656501 Approved no
Call Number Equine Behaviour @ team @ Serial 3656
Permanent link to this record
 

 
Author Winkelmayr, B.; Peham, C.; Fruhwirth, B.; Licka, T.; Scheidl, M.
Title Evaluation of the force acting on the back of the horse with an English saddle and a side saddle at walk, trot and canter Type Journal Article
Year 2006 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 36 Pages 406-410
Keywords (up) Animals; Back/*physiology; Back Pain/etiology/veterinary; Biomechanics; Exercise Test/veterinary; Female; Gait/physiology; Horse Diseases/etiology; Horses/*physiology; Humans; Locomotion/physiology; Male; Movement/*physiology; *Physical Conditioning, Animal/instrumentation/methods/physiology; *Pressure; Weight-Bearing/*physiology
Abstract REASONS FOR PERFORMING STUDY: Force transmission under an English saddle (ES) at walk, trot and canter is commonly evaluated, but the influence of a side saddle (SS) on the equine back has not been documented. HYPOTHESIS: Force transmission under a SS, with its asymmetric construction, is different from an ES in walk, trot and canter, expressed in maximum overall force (MOF), force in the quarters of the saddle mat, and centre of pressure (COP). The biomechanics of the equine back are different under a SS compared to ES. METHODS: Thirteen horses without clinical signs of back pain ridden in an indoor riding school with both saddles were measured using an electronic saddle sensor pad. Synchronous kinematic measurements were carried out with tracing markers placed along the back in front of (withers, W) and behind the saddle (4th lumbar vertebra, L4). At least 6 motion cycles at walk, trot and canter with both saddles (ES, SS) were measured. Out of the pressure distribution the maximum overall force (MOF) and the location of the centre of pressure (COP) were calculated. RESULTS: Under the SS the centre of pressure was located to the right of the median and slightly caudal compared to the COP under the ES in all gaits. The MOF was significantly different (P<0.01) between saddles. At walk, L4 showed significantly larger (P<0.01) vertical excursions under the ES. Under the SS relative horizontal movement of W was significantly reduced (P<0.01) at trot, and at canter the transversal movement was significantly reduced (P<0.01) . In both trot and canter, no significant differences in the movement of L4 were documented. CONCLUSIONS AND POTENTIAL RELEVANCE: The results demonstrate that the load under a SS creates asymmetric force transmission under the saddle, and also influences back movement. To change the load distribution on the back of horses with potential back pain and as a training variation, a combination of both riding styles is suitable.
Address Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:17402456 Approved no
Call Number Equine Behaviour @ team @ Serial 4007
Permanent link to this record
 

 
Author Fruehwirth, B.; Peham, C.; Scheidl, M.; Schobesberger, H.
Title Evaluation of pressure distribution under an English saddle at walk, trot and canter Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 754-757
Keywords (up) Animals; Back/*physiology; Biomechanics; Body Weight/physiology; Exercise Test/veterinary; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Pressure
Abstract REASONS FOR PERFORMING STUDY: Basic information about the influence of a rider on the equine back is currently lacking. HYPOTHESIS: That pressure distribution under a saddle is different between the walk, trot and canter. METHODS: Twelve horses without clinical signs of back pain were ridden. At least 6 motion cycles at walk, trot and canter were measured kinematically. Using a saddle pad, the pressure distribution was recorded. The maximum overall force (MOF) and centre of pressure (COP) were calculated. The range of back movement was determined from a marker placed on the withers. RESULTS: MOF and COP showed a consistent time pattern in each gait. MOF was 12.1 +/- 1.2 and 243 +/- 4.6 N/kg at walk and trot, respectively, in the ridden horse. In the unridden horse MOF was 172.7 +/- 11.8 N (walk) and 302.4 +/- 33.9 N (trot). At ridden canter, MOF was 27.2 +/- 4.4 N/kg. The range of motion of the back of the ridden horse was significantly lower compared to the unridden, saddled horse. CONCLUSIONS AND POTENTIAL RELEVANCE: Analyses may help quantitative and objective evaluation of the interaction between rider and horse as mediated through the saddle. The information presented is therefore of importance to riders, saddlers and equine clinicians. With the technique used in this study, style, skill and training level of different riders can be quantified, which would give the opportunity to detect potentially harmful influences and create opportunities for improvement.
Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656510 Approved no
Call Number Equine Behaviour @ team @ Serial 4041
Permanent link to this record
 

 
Author Cassiat, G.; Pourcelot, P.; Tavernier, L.; Geiger, D.; Denoix, J.M.; Degueurce, D.
Title Influence of individual competition level on back kinematics of horses jumping a vertical fence Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 748-753
Keywords (up) Animals; Back/*physiology; Biomechanics; Female; Forelimb/*physiology; Gait/*physiology; Hindlimb/*physiology; Horses/*physiology; Image Processing, Computer-Assisted; Imaging, Three-Dimensional/veterinary; Locomotion/physiology; Male; Video Recording
Abstract REASONS FOR PERFORMING STUDY: The costs and investments required for the purchase and training of showjumpers justify the need to find selection means for jumping horses. Use of objective kinematic criteria correlated to jumping ability could be helpful for this assessment. OBJECTIVES: To compare back kinematics between 2 groups of horses of different competition levels (Group 1, competing at high level; Group 2 competing at low level) while free jumping over a 1 m vertical fence. METHODS: Three-dimensional recordings were performed using 2 panning cameras. Kinematic parameters of the withers and tuber sacrale (vertical displacement, vertical and horizontal velocities), backline inclination and flexion-extension motion of the 3 main dorsal segments (thoracic, thoracolumbar and lumbosacral) were analysed. RESULTS: Group 2 horses had a lower displacement of their withers and tuber sacrale from the end of the last approach stride until the first departure stride (P<0.05). As a result, they increased the flexion of their thoracolumbar and lumbosacral junctions during the hindlimb swing phase before take-off (P<0.05). However, withers and tuber sacrale velocities were slightly modified. Group 1 horses pitched their backline less forward during the forelimb stance phase before take-off and straightened it more after landing (P<0.05), probably indicating a more efficient strutting action of their forelimbs. CONCLUSIONS AND POTENTIAL RELEVANCE: Because significant differences in back motion were found between good and poor jumpers when jumping a 1 m high fence, criteria based on certain back kinematics can be developed that may help in the selection of talented showjumpers.
Address UMR INRA-ENVA de Biomecanique et Pathologie Locomotrice du Cheval, Ecole Nationale Veterinaire d'Alfort, Avenue du General de Gaulle, 94704 Maisons Alfort, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656509 Approved no
Call Number Equine Behaviour @ team @ Serial 4042
Permanent link to this record
 

 
Author Powers, P.; Harrison, A.
Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech
Volume 1 Issue 2 Pages 135-146
Keywords (up) Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology
Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.
Address Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-3141 ISBN Medium
Area Expedition Conference
Notes PMID:14658371 Approved no
Call Number Serial 1904
Permanent link to this record
 

 
Author Licka, T.; Kapaun, M.; Peham, C.
Title Influence of rider on lameness in trotting horses Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 734-736
Keywords (up) Animals; Biomechanics; Body Weight; Exercise Test/veterinary; Female; Forelimb/physiopathology; Gait/*physiology; Head Movements/*physiology; Hindlimb/physiopathology; Horse Diseases/diagnosis/*physiopathology; Horses; Humans; Lameness, Animal/diagnosis/*physiopathology; Male; Stress, Mechanical; Weight-Bearing/physiology
Abstract REASONS FOR PERFORMING STUDY: Equine lameness is commonly evaluated when the horse is being ridden, but the influence of the rider on the lameness has not been documented. OBJECTIVE: To document the effect of 2 riders of different training levels on the vertical movement of the head and croup. METHODS: Twenty mature horses were ridden at trot by an experienced dressage rider and a novice rider, as well as trotted in hand. Kinematic measurements of markers placed on the horse's head and sacral bone were carried out. The asymmetries of the vertical head and sacral bone motion were calculated as lameness parameters and compared with paired t tests. RESULTS: Trotting in hand, 17 horses showed forelimb lameness (1-4/10) and 13 hindlimb lameness (1-2/10). Intra-individually, 11 horses showed significant differences in forelimb lameness and 4 horses showed significant differences in hindlimb lameness when ridden. Over all horses, hindlimb lameness increased significantly under the dressage rider compared to unridden horses. CONCLUSIONS: The presence of a rider can alter the degree of lameness; however, its influence cannot be predicted for an individual horse. POTENTIAL RELEVANCE: In order to evaluate mild lameness, horses should be evaluated at trot both under saddle and in hand. If lameness is exacerbated, a second rider may be helpful; the level of training of the rider should be taken into consideration.
Address Movement Science Group, Department V, Clinic of Orthopaedics in Ungulates, University of Veterinary Medicine, Vienna, Austria
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656506 Approved no
Call Number Equine Behaviour @ team @ Serial 3715
Permanent link to this record
 

 
Author Barrey, E.; Desliens, F.; Poirel, D.; Biau, S.; Lemaire, S.; Rivero, J.L.L.; Langlois, B.
Title Early evaluation of dressage ability in different breeds Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 319-324
Keywords (up) Animals; Biomechanics; Breeding; Discriminant Analysis; Female; Forelimb; Gait/genetics/*physiology; Hindlimb; Horses/anatomy & histology/*genetics/*physiology; Male; Photography/veterinary; *Physical Conditioning, Animal; Sports
Abstract Dressage is one of the Olympic equestrian sports practiced in several countries using different horse breeds. Specific characteristics of the walk, trot and canter are required for dressage. It has been assumed that some of these traits could be selected for genetically and contribute to dressage performance. The purpose of this study was to compare the walk, trot and conformation characteristics in young horses of different breeds used for dressage. A total of 142 horses age 3 years were classified into 3 groups of breeds (German, French and Spanish saddle horses) and tested using the same procedure. The skeletal conformation measurements were made by image analysis. Gait variables of the walk and trot were measured by the accelerometric gait analysis system Equimetrix. Discriminant analysis could explain the variability between the groups by taking into account the walk (P<0.0003), trot (P<0.0001) and conformation variables (P<0.0001). Many gait and conformation variables were significantly different between the breeds. In summary, the German horses had gait characteristics more adapted for dressage competition, and the results of this group could be used as a reference for early evaluation in dressage. Purebred Spanish horses could be considered as a reference for collected gaits used for farm work and old academic dressage. The gait and conformation tests could be applied in a breeding or crossing plan to detect more accurately young horses with good dressage ability.
Address INRA, Station de Genetique Quantitative et Appliquee, Groupe Cheval, Jouy-en-Josas, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405708 Approved no
Call Number Equine Behaviour @ team @ Serial 3726
Permanent link to this record