|   | 
Details
   web
Records
Author Cozzi, B.; Povinelli, M.; Ballarin, C.; Granato, A.
Title The Brain of the Horse: Weight and Cephalization Quotients Type Journal Article
Year 2014 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol
Volume 83 Issue (up) 1 Pages 9-16
Keywords
Abstract The horse is a common domestic animal whose anatomy has been studied since the XVI century. However, a modern neuroanatomy of this species does not exist and most of the data utilized in textbooks and reviews derive from single specimens or relatively old literature. Here, we report information on the brain of Equus caballus obtained by sampling 131 horses, including brain weight (as a whole and subdivided into its constituents), encephalization quotient (EQ), and cerebellar quotient (CQ), and comparisons with what is known about other relevant species. The mean weight of the fresh brains in our experimental series was 598.63 g (SEM ± 7.65), with a mean body weight of 514.12 kg (SEM ± 15.42). The EQ was 0.78 and the CQ was 0.841. The data we obtained indicate that the horse possesses a large, convoluted brain, with a weight similar to that of other hoofed species of like mass. However, the shape of the brain, the noteworthy folding of the neocortex, and the peculiar longitudinal distribution of the gyri suggest an evolutionary specificity at least partially separate from that of the Cetartiodactyla (even-toed mammals and cetaceans) with whom Perissodactyla (odd-toed mammals) are often grouped.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6592
Permanent link to this record
 

 
Author Dong, D.; Jones, G.; Zhang, S.
Title Dynamic evolution of bitter taste receptor genes in vertebrates Type Journal Article
Year 2009 Publication BMC Evolutionary Biology Abbreviated Journal
Volume 9 Issue (up) 1 Pages 12
Keywords
Abstract Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R), which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2148 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Dong2009 Serial 6637
Permanent link to this record
 

 
Author Pepperberg, I.M.
Title In search of king Solomon's ring: cognitive and communicative studies of Grey parrots (Psittacus erithacus) Type Journal Article
Year 2002 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 59 Issue (up) 1-2 Pages 54-67
Keywords *Animal Communication; Animals; Attention/physiology; Cognition/*physiology; Cues; Form Perception/physiology; Humans; Intelligence; Learning/physiology; Male; Models, Psychological; Parrots/*physiology; Psychomotor Performance/physiology; Reward; Social Behavior
Abstract During the past 24 years, I have used a modeling technique (M/R procedure) to train Grey parrots to use an allospecific code (English speech) referentially; I then use the code to test their cognitive abilities. The oldest bird, Alex, labels more than 50 different objects, 7 colors, 5 shapes, quantities to 6, 3 categories (color, shape, material) and uses 'no', 'come here', wanna go X' and 'want Y' (X and Y are appropriate location or item labels). He combines labels to identify, request, comment upon or refuse more than 100 items and to alter his environment. He processes queries to judge category, relative size, quantity, presence or absence of similarity/difference in attributes, and show label comprehension. He semantically separates labeling from requesting. He thus exhibits capacities once presumed limited to humans or nonhuman primates. Studies on this and other Greys show that parrots given training that lacks some aspect of input present in M/R protocols (reference, functionality, social interaction) fail to acquire referential English speech. Examining how input affects the extent to which parrots acquire an allospecific code may elucidate mechanisms of other forms of exceptional learning: learning unlikely in the normal course of development but that can occur under certain conditions.
Address The MIT Media Lab, Cambridge, Mass. 02139, USA. impepper@media.mit.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12097860 Approved no
Call Number refbase @ user @ Serial 579
Permanent link to this record
 

 
Author Marino, L.
Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol
Volume 59 Issue (up) 1-2 Pages 21-32
Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology
Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.
Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12097858 Approved no
Call Number Equine Behaviour @ team @ Serial 4158
Permanent link to this record
 

 
Author Tibbetts, E.A.; Dale, J.
Title Individual recognition: it is good to be different Type Journal Article
Year 2007 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol
Volume 22 Issue (up) 10 Pages 529-537
Keywords
Abstract Individual recognition (IR) behavior has been widely studied, uncovering spectacular recognition abilities across a range of taxa and modalities. Most studies of IR focus on the recognizer (receiver). These studies typically explore whether a species is capable of IR, the cues that are used for recognition and the specializations that receivers use to facilitate recognition. However, relatively little research has explored the other half of the communication equation: the individual being recognized (signaler). Provided there is a benefit to being accurately identified, signalers are expected to actively broadcast their identity with distinctive cues. Considering the prevalence of IR, there are probably widespread benefits associated with distinctiveness. As a result, selection for traits that reveal individual identity might represent an important and underappreciated selective force contributing to the evolution and maintenance of genetic polymorphisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4572
Permanent link to this record
 

 
Author Pusey, A.E.
Title Sex-biased dispersal and inbreeding avoidance in birds and mammals Type Journal Article
Year 1987 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol
Volume 2 Issue (up) 10 Pages 295-299
Keywords
Abstract Sex differences in dispersal distance are widespread in birds and mammals, but the predominantly dispersing sex differs consistently between the classes. There has been persistent debate over the relative importance of two factors -- intrasexual competition and inbreeding avoidance -- in producing sex-biased dispersal, and over the sources of the difference in dispersal patterns between the two classes. Recent studies cast new light on these questions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5326
Permanent link to this record
 

 
Author Wilson, S. D.; Clark, A. B.; Coleman, K.; Dearstyne, T.
Title Shyness and boldness in humans and other animals Type Journal Article
Year 1994 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol
Volume 9 Issue (up) 11 Pages 442-446
Keywords
Abstract The shy-bold continuum is a fundamental axis of behavioral variation in humans and at least some other species, but its taxonomic distribution and evolutionary implications are unknown. Models of optimal risk, density- or frequency-dependent selection, and phenotypic plasticity can provide a theoretical framework for understanding shyness and boldness as a product of natural selection. We sketch this framework and review the few empirical studies of shyness and boldness in natural populations. The study of shyness and boldness adds an interesting new dimension to behavioral ecology by focusing on the nature of continuous behavioral variation that exists within the familiar categories of age, sex and size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5161
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C.
Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
Year 2007 Publication Evolution Abbreviated Journal
Volume 61 Issue (up) 12 Pages 2811-2821
Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates
Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no
Call Number Equine Behaviour @ team @ Serial 4781
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
Year 2003 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 62 Issue (up) 2 Pages 108-116
Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity
Abstract The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.
Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12937349 Approved no
Call Number refbase @ user @ Serial 367
Permanent link to this record
 

 
Author Ricard, A.; Chanu, I.
Title Genetic parameters of eventing horse competition in France Type Journal Article
Year 2001 Publication Genetics, Selection, Evolution. : GSE Abbreviated Journal Genet Sel Evol
Volume 33 Issue (up) 2 Pages 175-190
Keywords Animals; Behavior, Animal; Female; France; Genotype; Horses/*genetics; Male; Physical Conditioning, Animal; Selection (Genetics); *Sports; Stereotyped Behavior
Abstract Genetic parameters of eventing horse competitions were estimated. About 13 000 horses, 30 000 annual results during 17 years and 110 000 starts in eventing competitions during 8 years were recorded. The measures of performance were logarithmic transformations of annual earnings, annual earnings per start, and annual earnings per place, and underlying variables responsible for ranks in each competition. Heritabilities were low (0.11 / 0.17 for annual results, 0.07 for ranks). Genetic correlations between criteria were high (greater than 0.90) except between ranks and earnings per place (0.58) or per start (0.67). Genetic correlations between ages (from 5 to 10 years old) were also high (more than 0.85) and allow selection on early performances. The genetic correlation between the results in different levels of competition (high/international and low/amateur) was near 1. Genetic correlations of eventing with other disciplines, which included partial aptitude needed for eventing, were very low for steeplechase races (0.18) and moderate with sport: jumping (0.45), dressage (0.58). The results suggest that selection on jumping performance will lead to some positive correlated response for eventing performance, but much more response could be obtained if a specific breeding objective and selection criteria were developed for eventing.
Address Institut national de la recherche agronomique, Station de genetique quantitative et appliquee, 78352 Jouy-en-Josas Cedex, France. ugenata@dga.inra.fr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0999-193X ISBN Medium
Area Expedition Conference
Notes PMID:11333833 Approved no
Call Number Equine Behaviour @ team @ Serial 3728
Permanent link to this record