|   | 
Details
   web
Records
Author Griffin, D.R.
Title Animals know more than we used to think Type
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue (up) 9 Pages 4833-4834
Keywords Animal Communication; Animals; Attention/physiology; Brain/physiology; Choice Behavior/physiology; Cognition/*physiology; Humans; Macaca mulatta/physiology/*psychology; Memory/*physiology; Optic Disk/physiology; Psychological Tests
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11320232 Approved no
Call Number Equine Behaviour @ team @ Serial 2823
Permanent link to this record
 

 
Author Neuringer, A.
Title Reinforced variability in animals and people: implications for adaptive action Type Journal Article
Year 2004 Publication The American Psychologist Abbreviated Journal Am Psychol
Volume 59 Issue (up) 9 Pages 891-906
Keywords Animals; Behavior, Animal; *Choice Behavior; Conditioning, Operant; Creativeness; Discrimination (Psychology); Humans; Memory; Problem Solving; *Reinforcement (Psychology)
Abstract Although reinforcement often leads to repetitive, even stereotyped responding, that is not a necessary outcome. When it depends on variations, reinforcement results in responding that is diverse, novel, indeed unpredictable, with distributions sometimes approaching those of a random process. This article reviews evidence for the powerful and precise control by reinforcement over behavioral variability, evidence obtained from human and animal-model studies, and implications of such control. For example, reinforcement of variability facilitates learning of complex new responses, aids problem solving, and may contribute to creativity. Depression and autism are characterized by abnormally repetitive behaviors, but individuals afflicted with such psychopathologies can learn to vary their behaviors when reinforced for so doing. And reinforced variability may help to solve a basic puzzle concerning the nature of voluntary action.
Address Department of Psychology, Reed College, Portland, OR 97202, USA. allen.neuringer@reed.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-066X ISBN Medium
Area Expedition Conference
Notes PMID:15584823 Approved no
Call Number Equine Behaviour @ team @ Serial 4106
Permanent link to this record
 

 
Author Linton, M.L.
Title Washoe the chimpanzee Type Journal Article
Year 1970 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 169 Issue (up) 943 Pages 328
Keywords Animals; Animals, Newborn; Cognition; Cultural Deprivation; *Hominidae; Humans; Infant; *Language Development; Psychology, Comparative
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:5450363 Approved no
Call Number Equine Behaviour @ team @ Serial 2849
Permanent link to this record
 

 
Author Bennett, A.T.
Title Do animals have cognitive maps? Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue (up) Pt 1 Pages 219-224
Keywords Animals; Cognition/*physiology; Humans; Space Perception/*physiology; Visual Pathways
Abstract Drawing on studies of humans, rodents, birds and arthropods, I show that 'cognitive maps' have been used to describe a wide variety of spatial concepts. There are, however, two main definitions. One, sensu Tolman, O'Keefe and Nadel, is that a cognitive map is a powerful memory of landmarks which allows novel short-cutting to occur. The other, sensu Gallistel, is that a cognitive map is any representation of space held by an animal. Other definitions with quite different meanings are also summarised. I argue that no animal has been conclusively shown to have a cognitive map, sensu Tolman, O'Keefe and Nadel, because simpler explanations of the crucial novel short-cutting results are invariably possible. Owing to the repeated inability of experimenters to eliminate these simpler explanations over at least 15 years, and the confusion caused by the numerous contradictory definitions of a cognitive map, I argue that the cognitive map is no longer a useful hypothesis for elucidating the spatial behaviour of animals and that use of the term should be avoided.
Address Department of Pure Mathematics, University of Adelaide, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576693 Approved no
Call Number Equine Behaviour @ team @ Serial 2756
Permanent link to this record
 

 
Author Gallistel, C.R.; Cramer, A.E.
Title Computations on metric maps in mammals: getting oriented and choosing a multi-destination route Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue (up) Pt 1 Pages 211-217
Keywords Animals; Brain/physiology; Cercopithecus aethiops; Cognition/*physiology; Humans; Mammals/*physiology; Movement; Orientation/*physiology; Rats; Space Perception; Visual Pathways/*physiology
Abstract The capacity to construct a cognitive map is hypothesized to rest on two foundations: (1) dead reckoning (path integration); (2) the perception of the direction and distance of terrain features relative to the animal. A map may be constructed by combining these two sources of positional information, with the result that the positions of all terrain features are represented in the coordinate framework used for dead reckoning. When animals need to become reoriented in a mapped space, results from rats and human toddlers indicate that they focus exclusively on the shape of the perceived environment, ignoring non-geometric features such as surface colors. As a result, in a rectangular space, they are misoriented half the time even when the two ends of the space differ strikingly in their appearance. In searching for a hidden object after becoming reoriented, both kinds of subjects search on the basis of the object's mapped position in the space rather than on the basis of its relationship to a goal sign (e.g. a distinctive container or nearby marker), even though they have demonstrably noted the relationship between the goal and the goal sign. When choosing a multidestination foraging route, vervet monkeys look at least three destinations ahead, even though they are only capable of keeping a maximum of six destinations in mind at once.
Address Department of Psychology, University of California, Los Angeles 90095, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576692 Approved no
Call Number Equine Behaviour @ team @ Serial 2757
Permanent link to this record
 

 
Author Etienne, A.S.; Maurer, R.; Seguinot, V.
Title Path integration in mammals and its interaction with visual landmarks Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue (up) Pt 1 Pages 201-209
Keywords Animals; Cognition/physiology; Cricetinae; Gerbillinae; Humans; Locomotion/*physiology; Mammals/*physiology; Mesocricetus; Mice; Proprioception/physiology; Rats; Visual Pathways/*physiology; Visual Perception/*physiology
Abstract During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.
Address Laboratoire d'Ethologie, FPSE, Universite de Geneve, Carouge, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576691 Approved no
Call Number Equine Behaviour @ team @ Serial 2758
Permanent link to this record
 

 
Author Papakostas, Y.G.; Daras, M.D.; Liappas, I.A.; Markianos, M.
Title Horse madness (hippomania) and hippophobia Type Journal Article
Year 2005 Publication History of Psychiatry Abbreviated Journal Hist Psychiatry
Volume 16 Issue (up) Pt 4 (no 64) Pages 467-471
Keywords Ancient Lands; Animals; Cattle; History, Ancient; Horse Diseases/*history; Horses; Humans; *Mythology
Abstract Anthropophagic horses have been described in classical mythology. From a current perspective, two such instances are worth mentioning and describing: Glaucus of Potniae, King of Efyra, and Diomedes, King of Thrace, who were both devoured by their horses. In both cases, the horses' extreme aggression and their subsequent anthropophagic behaviour were attributed to their madness (hippomania) induced by the custom of feeding them with flesh. The current problem of 'mad cow' disease (bovine spongiform encephalopathy) is apparently related to a similar feed pattern. Aggressive behaviour in horses can be triggered by both biological and psychological factors. In the cases cited here, it is rather unlikely that the former were the cause. On the other hand, the multiple abuses imposed on the horses, coupled with people's fantasies and largely unconscious fears (hippophobia), may possibly explain these mythological descriptions of 'horse-monsters'.
Address Athens University Medical School
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-154X ISBN Medium
Area Expedition Conference
Notes PMID:16482685 Approved no
Call Number Serial 1876
Permanent link to this record