toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dunn, M.F.; Branlant, G. openurl 
  Title Roles of zinc ion and reduced coenzyme in horse liver alcohol dehydrogenase catalysis. The mechanism of aldehyde activation Type Journal Article
  Year 1975 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume 14 Issue (down) 14 Pages 3176-3182  
  Keywords *Alcohol Oxidoreductases/metabolism; Aldehydes/*pharmacology; Animals; Binding Sites; Enzyme Activation/drug effects; Horses; Hydrogen-Ion Concentration; Kinetics; Liver/enzymology; *NAD/analogs & derivatives/pharmacology; Oxidation-Reduction; Protein Binding; Spectrophotometry; Spectrophotometry, Ultraviolet; Temperature; *Zinc/pharmacology  
  Abstract 1,4,5,6-Tetrahydronicotinamide adenine dinucleotide (H2NADH) has been investigated as a reduced coenzyme analog in the reaction between trans-4-N,N-dimethylaminocinnamaldehyde (I) (lambdamax 398 nm, epsilonmax 3.15 X 10-4 M-minus 1 cm-minus 1) and the horse liver alcohol dehydrogenase-NADH complex. These equilibrium binding and temperature-jump kinetic studies establish the following. (i) Substitution of H2NADH for NADH limits reaction to the reversible formation of a new chromophoric species, lambdamax 468 nm, epsilonmax 5.8 x 10-4 M-minus 1 cm-minus 1. This chromophore is demonstrated to be structurally analogous to the transient intermediate formed during the reaction of I with the enzyme-NADH complex [Dunn, M. F., and Hutchison, J. S. (1973), Biochemistry 12, 4882]. (ii) The process of intermediate formation with the enzyme-NADH complex is independent of pH over the range 6.13-10.54. Although studies were limited to the pH range 5.98-8.72, a similar pH independence appears to hold for the H2NADH system. (iii) Within the ternary complex, I is bound within van der Waal's contact distance of the coenzyme nicotinamide ring. (iv) Formation of the transient intermediate does not involve covalent modification of coenzyme. Based on these findings, we conclude that zinc ion has a Lewis acid function in facilitating the chemical activation of the aldehyde carbonyl for reduction, and that reduced coenzyme plays a noncovalent effector role in this substrate activating step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:238585 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3817  
Permanent link to this record
 

 
Author Steinhoff, H.J.; Lieutenant, K.; Redhardt, A. openurl 
  Title Conformational transition of aquomethemoglobin: intramolecular histidine E7 binding reaction to the heme iron in the temperature range between 220 K and 295 K as seen by EPR and temperature-jump measurements Type Journal Article
  Year 1989 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 996 Issue (down) 1-2 Pages 49-56  
  Keywords Animals; Electron Spin Resonance Spectroscopy; Heme; Histidine; Horses; Humans; Hydrogen-Ion Concentration; Methemoglobin/*ultrastructure; Motion; Protein Conformation; Temperature; Thermodynamics; Water  
  Abstract Temperature-dependent EPR and temperature-jump measurements have been carried out, in order to examine the high-spin to low-spin transition of aquomethemogobin (pH 6.0). Relaxation rates and equilibrium constants could be determined as a function of temperature. As a reaction mechanism for the high-spin to low-spin transition, the binding of N epsilon of His E7 to the heme iron had been proposed; the same mechanism had been suggested for the ms-effect, found in temperature-jump experiments on aquomethemoglobin. A comparison of the thermodynamic quantities, deduced form the measurements in this paper, gives evidence that indeed the same reaction is investigated in both cases. Our results and most of the findings of earlier studies on the spin-state transitions of aquomethemoglobin, using susceptibility, optical, or EPR measurements, can be explained by the transition of methemoglobin with H2O as ligand (with high-spin state at all temperatures) and methemoglobin with ligand N epsilon of His E7 (with a low-spin ground state). Thermal fluctuations of large amplitude have to be postulated for the reaction to take place, so this reaction may be understood as a probe for the study of protein dynamics.  
  Address Institut fur Biophysik, Ruhr-Universitat Bochum, F.R.G  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:2544230 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3803  
Permanent link to this record
 

 
Author Hillidge, C.J.; Lees, P. openurl 
  Title Cardiac output in the conscious and anaesthetised horse Type Journal Article
  Year 1975 Publication Equine veterinary journal Abbreviated Journal Equine Vet J  
  Volume 7 Issue (down) 1 Pages 16-21  
  Keywords Anesthesia, Inhalation/*veterinary; Animals; Carbon Dioxide/blood; *Cardiac Output/veterinary; *Consciousness; Electrocardiography/veterinary; Ether, Ethyl; Female; Halothane; Heart Rate; Heart Ventricles/physiology; Horses/*physiology; Hydrogen-Ion Concentration; Male; Oxygen/blood; Posture  
  Abstract Cardiac output in the horse was measured before and at predetermined times during 2-hour periods of thiopentone-halothane and thiopentone-diethyl ether anaesthesia. Left ventricular stroke volume was decreased to a similar extent during anaesthesia with each volatile agent, but a greater reduction in cardiac output occurred during halothane anaesthesia. This finding reflected the differing effects of halothane and ether on heart rate, a slight bradycardia occurring with the former agent while ether produced a small degree of tachycardia. The latter effect was attributed to enhanced sympathoadrenal activity. Changes in cardiac output and stroke volume were considered in relation to other factors, including arterial blood pH and tensions of oxygen and carbon dioxide. Positive correlations between some of these variables and cardiac function were established. With both volatile agents the reductions in stroke volume and cardiac output were related to the duration of anaesthesia, being greatest during the early stages. Possible reasons for the tendency of stroke volume and cardiac output to return towards control levels are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0425-1644 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:234842 Approved no  
  Call Number refbase @ user @ Serial 102  
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 331 Issue (down) 1 Pages 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
 

 
Author Abbruzzetti, S.; Crema, E.; Masino, L.; Vecli, A.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump Type Journal Article
  Year 2000 Publication Biophysical Journal Abbreviated Journal Biophys J  
  Volume 78 Issue (down) 1 Pages 405-415  
  Keywords Animals; Apoproteins/*chemistry; Horses; *Hydrogen-Ion Concentration; Kinetics; Models, Molecular; Myoglobin/*chemistry; Protein Conformation; *Protein Folding; Protein Structure, Secondary; Spectrometry, Fluorescence  
  Abstract Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.  
  Address Dipartimento di Fisica, Universita di Parma, 43100 Parma, Italia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3495 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10620304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3792  
Permanent link to this record
 

 
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue (down) 1 Pages 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Saigo, S. openurl 
  Title Kinetic and equilibrium studies of alkaline isomerization of vertebrate cytochromes c Type Journal Article
  Year 1981 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 669 Issue (down) 1 Pages 13-20  
  Keywords Amino Acid Sequence; Animals; Cytochrome c Group/*metabolism; Dogs; Hydrogen-Ion Concentration; Isomerism; Kinetics; Vertebrates/metabolism  
  Abstract Equilibria and kinetics of alkaline isomerization of seven ferricytochromes c from vertebrates were studied by pH-titration and pH-jump methods in the pH region of 7-12. In the equilibrium behavior, no significant difference was detected among the cytochromes c, whereas marked differences in the kinetic behavior were observed. According to the kinetic behavior of the isomerization, the cytochromes c examined fall into three classes: Group I (horse, sheep, dog and pigeon cytochromes c), Group II (tuna and bonito cytochromes c) and Group III (rhesus monkey cytochrome c). The kinetic results are interpreted in terms of the sequential scheme: Neutral form in equilibrium with fast Transient form in equilibrium with slow Alkaline form where the neutral and alkaline forms are the species stable at neutral and alkaline pH, respectively, and the transient form is a kinetic intermediate. From comparison of the primary sequences of the seven cytochromes c and the classification of these cytochromes c, it is concluded that the amino acid substitution Phe/Tyr at the 46-th position has a major influence on the kinetic behavior. In Group II and III cytochromes c, the ionization of Tyr-46 is suggested to bring about loosening of the heme crevice and thus facilitate the ligand replacement involved in the isomerization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6271238 Approved no  
  Call Number refbase @ user @ Serial 3871  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print