|   | 
Details
   web
Records
Author Sukhomlinov, B.F.; Korobov, V.N.; Gonchar, M.V.; Datsiuk, L.A.; Korzhev, V.A.
Title [Comparative analysis of the peroxidase activity of myoglobins in mammals] Type Journal Article
Year 1987 Publication Zhurnal Evoliutsionnoi Biokhimii i Fiziologii Abbreviated Journal Zh Evol Biokhim Fiziol
Volume 23 Issue (up) 1 Pages 37-41
Keywords Amino Acid Sequence; Animals; Ecology; *Evolution; Kinetics; Mammals/*metabolism; Myoglobin/*metabolism; Peroxidases/*metabolism
Abstract Studies have been made on the peroxidase activity of metmyoglobins in animals from various ecological groups--the horse Equus caballus, cattle Bos taurus, beaver Castor fiber, otter Lutra lutra, mink Mustela vison and dog Canis familiaris. It was found that the level of this activity in diving animals depends on the duration of their diving, whereas in terrestrial species--on the strength of muscular contraction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title Sravnitel'nyi analiz peroksidaznoi aktivnosti mioglobinov u mlekopitaiushchikh
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-4529 ISBN Medium
Area Expedition Conference
Notes PMID:3564776 Approved no
Call Number Equine Behaviour @ team @ Serial 2681
Permanent link to this record
 

 
Author Parker, S.T.
Title A general model for the adaptive function of self-knowledge in animals and humans Type Journal Article
Year 1997 Publication Consciousness and Cognition Abbreviated Journal Conscious Cogn
Volume 6 Issue (up) 1 Pages 75-86
Keywords *Adaptation, Psychological; Animals; *Awareness; Concept Formation; Evolution; Humans; Phylogeny; *Self Concept; Species Specificity
Abstract This article offers a general definition of self-knowledge that embraces all forms and levels of self-knowledge in animals and humans. It is hypothesized that various levels of self-knowledge constitute an ordinal scale such that each species in a lineage displays the forms of self-knowledge found in related species as well as new forms it and its sister species may have evolved. Likewise, it is hypothesized that these various forms of levels of self-knowledge develop in the sequence in which they evolved. Finally, a general hypothesis for the functional significance of self-knowledge is proposed along with subhypotheses regarding the adaptive significance of various levels of self-knowledge in mammals including human and nonhuman primates. The general hypothesis is that self-knowledge serves as a standard for assessing the qualities of conspecifics compared to those of the self. Such assessment is crucial to deciding among alternative reproductive and subsistence strategies. The qualities that are assessed, which vary across taxa, range from the size and strength of the self to its mathematical or musical abilities. This so-called assessment model of self-knowledge is based on evolutionary biological models for social selection and the role of assessment in animal communication.
Address Anthropology Department, Sonoma State University, Rohnert Park, California, USA. Parker@Sonoma.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1053-8100 ISBN Medium
Area Expedition Conference
Notes PMID:9170562 Approved no
Call Number Equine Behaviour @ team @ Serial 4160
Permanent link to this record
 

 
Author Corballis, M.C.
Title Of mice and men – and lopsided birds Type Journal Article
Year 2008 Publication Cortex Abbreviated Journal
Volume 44 Issue (up) 1 Pages 3-7
Keywords Cerebral asymmetry; Handedness; Evolution; Laterality
Abstract The article by Zucca and Sovrano (2008, this issue) represents part of a new wave of studies of lateralization in nonhuman species. This work is often in conflict with earlier studies of human cerebral asymmetry and handedness, and the associated claim that these asymmetries are uniquely human, and perhaps even a result of the “speciation event” that led to modern humans. It is now apparent that there are close parallels between human and nonhuman asymmetries, suggesting that they have ancient roots. I argue that asymmetries must be seen in the context of a bilaterally symmetrical body plan, and that there is a balance to be struck between the adaptive advantages of symmetry and asymmetry. In human evolution, systematic asymmetries were incorporated into activities that probably are unique to our species, but the precursors of these asymmetries are increasingly evident in other species, including frogs, fish, birds, and mammals – especially primates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4634
Permanent link to this record
 

 
Author Marino, L.
Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol
Volume 59 Issue (up) 1-2 Pages 21-32
Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology
Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.
Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12097858 Approved no
Call Number Equine Behaviour @ team @ Serial 4158
Permanent link to this record
 

 
Author Chalmeau, R.; Gallo, A.
Title Cooperation in primates: Critical analysis of behavioural criteria Type Journal Article
Year 1995 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 35 Issue (up) 1-3 Pages 101-111
Keywords Cognition; Communication; Cooperation; Evolution; Primates
Abstract Concerning hunting in chimpanzees, cooperation has generally been attributed to the behaviour of two or more individuals acting together to achieve a common goal (Boesch and Boesch, 1989). The common goal is often considered as the concrete result of a common action by two or several individuals. Although this result could be used as a criterion for cooperation, it could also be an outcome due to chance. We suggest that the goal, viewed as a concrete benefit shared by the partners, is not a requisite of cooperation but rather a possible consequence of a common action largely submitted to social constraints. Individuals engaged in a cooperative task in order to solve a problem have to exchange information to adjust to each other's behaviour. However, evidence of communication between partners during simultaneous cooperation is rare. An experiment in which two chimpanzees each had to simultaneously pull a handle to get a fruit was performed. We analysed not only the concrete result of the partners' activity but also what the individuals took into account before pulling a handle. We tried to specify what the chimpanzees learned by means of a series of logical propositions which we were able to confront the experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 570
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C.
Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
Year 2007 Publication Evolution Abbreviated Journal
Volume 61 Issue (up) 12 Pages 2811-2821
Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates
Abstract Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no
Call Number Equine Behaviour @ team @ Serial 4781
Permanent link to this record
 

 
Author Barton, R.A.
Title Neocortex size and behavioural ecology in primates Type Journal Article
Year 1996 Publication Proceedings of the Royal Society B Abbreviated Journal Proc. R. Soc. Lond. B
Volume 263 Issue (up) 1367 Pages 173-177
Keywords Animals; *Behavior, Animal; Brain/*anatomy & histology; Cerebral Cortex/*anatomy & histology/*physiology; *Ecology; Evolution; Primates/anatomy & histology/*physiology/psychology; Regression Analysis; Species Specificity
Abstract The neocortex is widely held to have been the focus of mammalian brain evolution, but what selection pressures explain the observed diversity in its size and structure? Among primates, comparative studies suggest that neocortical evolution is related to the cognitive demands of sociality, and here I confirm that neocortex size and social group size are positively correlated once phylogenetic associations and overall brain size are taken into account. This association holds within haplorhine but not strepsirhine primates. In addition, the neocortex is larger in diurnal than in nocturnal primates, and among diurnal haplorhines its size is positively correlated with the degree of frugivory. These ecological correlates reflect the diverse sensory-cognitive functions of the neocortex.
Address Department of Anthropology, University of Durham
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:8728982 Approved no
Call Number Equine Behaviour @ team @ Serial 4783
Permanent link to this record
 

 
Author Sinha, A.
Title Knowledge acquired and decisions made: triadic interactions during allogrooming in wild bonnet macaques, Macaca radiata Type Journal Article
Year 1998 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 353 Issue (up) 1368 Pages 619-631
Keywords Aggression; Animals; Cognition; Computer Simulation; Decision Making; Evolution; Female; Grooming; Logistic Models; Macaca radiata/*psychology; *Social Behavior; Social Dominance
Abstract The pressures of developing and maintaining intricate social relationships may have led to the evolution of enhanced cognitive abilities in many nonhuman primates. Knowledge of the dominance ranks and social relationships of other individuals, in particular, is important in evaluating one's position in the rank hierarchy and affiliative networks. Triadic interactions offer an excellent opportunity to examine whether decisions are taken by individuals on the basis of such knowledge. Allogrooming supplants among wild female bonnet macaques (macaca radiata) usually involved the subordinate female of a grooming dyad retreating at the approach of a female dominant to both members of the dyad. In a few exceptional cases, however, the dominant member of the dyad retreated; simple non-cognitive hypotheses involving dyadic rank differences and agonistic relationships failed to explain this phenomenon. Instead, retreat by the dominant individual was positively correlated with the social attractiveness of her subordinate companion (as measured by the duration of grooming received by the latter from other females in the troop). This suggests that not only does an individual evaluate relationships among other females, but does so on the basis of the amount of grooming received by them. Similarly, the frequency of approaches received by any female was correlated with her social attractiveness when she was the dominant member of the dyad, but not when she was the subordinate. This indicated that approaching females might be aware of the relative dominance ranks of the two allogrooming individuals. In logistic regression analyses, the probability of any individual retreating was found to be influenced more by her knowledge of her rank difference with both the other interactants, rather than by their absolute ranks. Moreover, information about social attractiveness appeared to be used in terms of correlated dominance ranks. The nature of knowledge acquired by bonnet macaque females may thus be egotistical in that other individuals are evaluated relative to oneself, integrative in that information about all other interactants is used simultaneously, and hierarchical in the ability to preferentially use certain categories of knowledge for the storage of related information from other domains.
Address National Centre for Biological Sciences, TIFR Centre, Bangalore, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8436 ISBN Medium
Area Expedition Conference
Notes PMID:9602536 Approved no
Call Number Equine Behaviour @ team @ Serial 4362
Permanent link to this record
 

 
Author Joffe, T.H.; Dunbar, R.I.
Title Visual and socio-cognitive information processing in primate brain evolution Type Journal Article
Year 1997 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 264 Issue (up) 1386 Pages 1303-1307
Keywords Animals; Brain/anatomy & histology/*physiology; Cognition/physiology; *Evolution; Geniculate Bodies/anatomy & histology/physiology; Humans; Mental Processes/physiology; Neocortex/physiology; Primates/anatomy & histology/*physiology/*psychology; *Social Behavior; Visual Cortex/anatomy & histology/physiology
Abstract Social group size has been shown to correlate with neocortex size in primates. Here we use comparative analyses to show that social group size is independently correlated with the size of non-V1 neocortical areas, but not with other more proximate components of the visual system or with brain systems associated with emotional cueing (e.g. the amygdala). We argue that visual brain components serve as a social information 'input device' for socio-visual stimuli such as facial expressions, bodily gestures and visual status markers, while the non-visual neocortex serves as a 'processing device' whereby these social cues are encoded, interpreted and associated with stored information. However, the second appears to have greater overall importance because the size of the V1 visual area appears to reach an asymptotic size beyond which visual acuity and pattern recognition may not improve significantly. This is especially true of the great ape clade (including humans), that is known to use more sophisticated social cognitive strategies.
Address School of Life Sciences, University of Liverpool, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:9332015 Approved no
Call Number Serial 2095
Permanent link to this record
 

 
Author Garamszegi, L.Z.; Møller, A.P.; Erritzøe, J.
Title Coevolving avian eye size and brain size in relation to prey capture and nocturnality Type Journal Article
Year 2002 Publication Proceedings of the Royal Society of London. Series B: Biological Sciences Abbreviated Journal Proc Roy Soc Lond B Biol Sci
Volume 269 Issue (up) 1494 Pages 961-967
Keywords adaptation; behaviour; brain size; coevolution; eye size; vision
Abstract Behavioural adaptation to ecological conditions can lead to brain size evolution. Structures involved in behavioural visual information processing are expected to coevolve with enlargement of the brain. Because birds are mainly vision–oriented animals, we tested the predictions that adaptation to different foraging constraints can result in eye size evolution, and that species with large eyes have evolved large brains to cope with the increased amount of visual input. Using a comparative approach, we investigated the relationship between eye size and brain size, and the effect of prey capture technique and nocturnality on these traits. After controlling for allometric effects, there was a significant, positive correlation between relative brain size and relative eye size. Variation in relative eye and brain size were significantly and positively related to prey capture technique and nocturnality when a potentially confounding variable, aquatic feeding, was controlled statistically in multiple regression of independent linear contrasts. Applying a less robust, brunching approach, these patterns also emerged, with the exception that relative brain size did not vary with prey capture technique. Our findings suggest that relative eye size and brain size have coevolved in birds in response to nocturnal activity and, at least partly, to capture of mobile prey.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1098/rspb.2002.1967 Approved no
Call Number Equine Behaviour @ team @ Serial 5452
Permanent link to this record