|   | 
Details
   web
Records
Author Bobbert, M.F.; Santamaria, S.
Title Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping Type Journal Article
Year 2005 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 208 Issue (down) 2 Pages 249-260
Keywords Animals; Biomechanics; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Time Factors
Abstract The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).
Address Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, van der Boechorstraat 9, NL-1081 BT Amsterdam, The Netherlands. MFBobbert@fbw.vu.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15634844 Approved no
Call Number Serial 1895
Permanent link to this record
 

 
Author Brinkmann, L.; Gerken, M.; Hambly, C.; Speakman, J.R.; Riek, A.
Title Saving energy during hard times: Energetic adaptations of Shetland pony mares Type Journal Article
Year 2014 Publication The Journal of Experimental Biology Abbreviated Journal J. Exp. Biol.
Volume 217 Issue (down) Pages 4320-4327
Keywords
Abstract Recent results suggest that wild Northern herbivores reduce their metabolism during times of low ambient temperatures and food shortage in order to reduce their energetic needs. It is however not known if domesticated animals are also able to reduce their energy expenditure. We exposed ten Shetland pony mares to different environmental conditions (summer and winter) and to two food quantities (60 and 100% of maintenance energy requirement, respectively) during low winter temperatures to examine energetic and behavioural responses. In summer ponies showed a considerably higher field metabolic rate (FMR) (63.4±15.0 MJ d-1) compared to restrictively fed and control animals in winter (24.6±7.8 MJ d-1 and 15.0±1.1 MJ d-1, respectively). During summer conditions locomotor activity, resting heart rates and total water turnover were considerably elevated (P<0.001) compared to winter. Restrictively fed animals (N=5) compensated for the decreased energy supply by reducing their FMR by 26% compared to control animals (N=5). Furthermore, resting heart rate, body mass and body condition score were lower (29.2±2.7 beats min-1; 140±22 kg; 3.0±1.0 points) than in control animals (36.8±41 beats min-1; 165 ±31 kg; 4.4±0.7 points; P<0.05). While the observed behaviour did not change, nocturnal hypothermia was elevated. We conclude that ponies acclimatize to different climatic conditions by changing their metabolic rate, behaviour and some physiological parameters. When exposed to energy challenges, ponies, like wild herbivores, exhibited hypometabolism and nocturnal hypothermia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1242/jeb.111815 Approved no
Call Number Equine Behaviour @ team @ Serial 5836
Permanent link to this record