|   | 
Details
   web
Records
Author Griffiths, D.P.; Clayton, N.S.
Title Testing episodic memory in animals: A new approach Type Journal Article
Year 2001 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 73 Issue (up) 5 Pages 755-762
Keywords Episodic memory; Food-caching; Animal models
Abstract Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory “receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events.” Thus, episodic memory provides information about the `what' and `when' of events (`temporally dated experiences') and about `where' they happened (`temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 401
Permanent link to this record
 

 
Author Clayton, N.S.
Title COGNITION: An Open Sandwich or an Open Question? Type Journal Article
Year 2004 Publication Science Abbreviated Journal Science
Volume 305 Issue (up) 5682 Pages 344-
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1126/science.1099512 Approved no
Call Number Equine Behaviour @ team @ Serial 2955
Permanent link to this record
 

 
Author Emery, N.J.; Clayton, N.S.
Title The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes Type Journal Article
Year 2004 Publication Science Abbreviated Journal Science
Volume 306 Issue (up) 5703 Pages 1903-1907
Keywords
Abstract Discussions of the evolution of intelligence have focused on monkeys and apes because of their close evolutionary relationship to humans. Other large-brained social animals, such as corvids, also understand their physical and social worlds. Here we review recent studies of tool manufacture, mental time travel, and social cognition in corvids, and suggest that complex cognition depends on a “tool kit” consisting of causal reasoning, flexibility, imagination, and prospection. Because corvids and apes share these cognitive tools, we argue that complex cognitive abilities evolved multiple times in distantly related species with vastly different brain structures in order to solve similar socioecological problems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 10.1126/science.1098410 Approved no
Call Number Equine Behaviour @ team @ Serial 2959
Permanent link to this record
 

 
Author Clayton, N.S.; Dickinson, A.
Title Episodic-like memory during cache recovery by scrub jays Type Journal Article
Year 1998 Publication Abbreviated Journal Nature
Volume 395 Issue (up) 6699 Pages 272-274
Keywords
Abstract The recollection of past experiences allows us to recall what a particular event was, and where and when it occurred1,2, a form of memory that is thought to be unique to humans3. It is known, however, that food-storing birds remember the spatial location4, 5, 6 and contents6, 7, 8, 9 of their caches. Furthermore, food-storing animals adapt their caching and recovery strategies to the perishability of food stores10, 11, 12, 13, which suggests that they are sensitive to temporal factors. Here we show that scrub jays (Aphelocoma coerulescens) remember 'when' food items are stored by allowing them to recover perishable 'wax worms' (wax-moth larvae) and non-perishable peanuts which they had previously cached in visuospatially distinct sites. Jays searched preferentially for fresh wax worms, their favoured food, when allowed to recover them shortly after caching. However, they rapidly learned to avoid searching for worms after a longer interval during which the worms had decayed. The recovery preference of jays demonstrates memory of where and when particular food items were cached, thereby fulfilling the behavioural criteria for episodic-like memory in non-human animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes 10.1038/26216 Approved no
Call Number Equine Behaviour @ team @ Serial 4788
Permanent link to this record