|   | 
Details
   web
Records
Author Moses, S.N.; Villate, C.; Ryan, J.D.
Title An investigation of learning strategy supporting transitive inference performance in humans compared to other species Type Journal Article
Year 2006 Publication Neuropsychologia Abbreviated Journal Neuropsychologia
Volume 44 Issue (down) 8 Pages 1370-1387
Keywords Adult; Analysis of Variance; Association Learning/*physiology; *Cognition; *Concept Formation; Female; Humans; *Logic; Male; Pattern Recognition, Visual/physiology; Photic Stimulation/methods; Reaction Time/physiology
Abstract Generalizations about neural function are often drawn from non-human animal models to human cognition, however, the assumption of cross-species conservation may sometimes be invalid. Humans may use different strategies mediated by alternative structures, or similar structures may operate differently within the context of the human brain. The transitive inference problem, considered a hallmark of logical reasoning, can be solved by non-human species via associative learning rather than logic. We tested whether humans use similar strategies to other species for transitive inference. Results are crucial for evaluating the validity of widely accepted assumptions of similar neural substrates underlying performance in humans and other animals. Here we show that successful transitive inference in humans is unrelated to use of associative learning strategies and is associated with ability to report the hierarchical relationship among stimuli. Our work stipulates that cross-species generalizations must be interpreted cautiously, since performance on the same task may be mediated by different strategies and/or neural systems.
Address Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada. smoses@rotman-baycrest.on.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-3932 ISBN Medium
Area Expedition Conference
Notes PMID:16503340 Approved no
Call Number refbase @ user @ Serial 153
Permanent link to this record
 

 
Author Grosenick, L.; Clement, T.S.; Fernald, R.D.
Title Fish can infer social rank by observation alone Type Journal Article
Year 2007 Publication Nature Abbreviated Journal Nature
Volume 445 Issue (down) 7126 Pages 429-432
Keywords Aggression/physiology; Animals; Cognition/*physiology; Female; Fishes/*physiology; Learning/*physiology; Male; Models, Biological; *Social Dominance; Territoriality
Abstract Transitive inference (TI) involves using known relationships to deduce unknown ones (for example, using A > B and B > C to infer A > C), and is thus essential to logical reasoning. First described as a developmental milestone in children, TI has since been reported in nonhuman primates, rats and birds. Still, how animals acquire and represent transitive relationships and why such abilities might have evolved remain open problems. Here we show that male fish (Astatotilapia burtoni) can successfully make inferences on a hierarchy implied by pairwise fights between rival males. These fish learned the implied hierarchy vicariously (as 'bystanders'), by watching fights between rivals arranged around them in separate tank units. Our findings show that fish use TI when trained on socially relevant stimuli, and that they can make such inferences by using indirect information alone. Further, these bystanders seem to have both spatial and featural representations related to rival abilities, which they can use to make correct inferences depending on what kind of information is available to them. Beyond extending TI to fish and experimentally demonstrating indirect TI learning in animals, these results indicate that a universal mechanism underlying TI is unlikely. Rather, animals probably use multiple domain-specific representations adapted to different social and ecological pressures that they encounter during the course of their natural lives.
Address Department of Biological Sciences, Stanford University, Stanford, California, 94305, USA. logang@stanford.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:17251980 Approved no
Call Number refbase @ user @ Serial 600
Permanent link to this record
 

 
Author Gentner, T.Q.; Fenn, K.M.; Margoliash, D.; Nusbaum, H.C.
Title Recursive syntactic pattern learning by songbirds Type Journal Article
Year 2006 Publication Nature Abbreviated Journal Nature
Volume 440 Issue (down) 7088 Pages 1204-1207
Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/*physiology; Humans; *Language; Learning/*physiology; Linguistics; Models, Neurological; Semantics; Starlings/*physiology; Stochastic Processes
Abstract Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.
Address Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA. tgentner@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16641998 Approved no
Call Number refbase @ user @ Serial 353
Permanent link to this record
 

 
Author Franks, N.R.; Richardson, T.
Title Teaching in tandem-running ants Type Journal Article
Year 2006 Publication Nature Abbreviated Journal Nature
Volume 439 Issue (down) 7073 Pages 153
Keywords *Animal Communication; Animals; Ants/*physiology; Feedback/physiology; Learning/*physiology; *Teaching
Abstract The ant Temnothorax albipennis uses a technique known as tandem running to lead another ant from the nest to food--with signals between the two ants controlling both the speed and course of the run. Here we analyse the results of this communication and show that tandem running is an example of teaching, to our knowledge the first in a non-human animal, that involves bidirectional feedback between teacher and pupil. This behaviour indicates that it could be the value of information, rather than the constraint of brain size, that has influenced the evolution of teaching.
Address School of Biological Sciences, University of Bristol, Bristol BS8 IUG, UK. nigel.franks@bristol.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16407943 Approved no
Call Number Equine Behaviour @ team @ Serial 4651
Permanent link to this record
 

 
Author Whiten, A.
Title The second inheritance system of chimpanzees and humans Type Journal Article
Year 2005 Publication Nature Abbreviated Journal Nature
Volume 437 Issue (down) 7055 Pages 52-55
Keywords Animals; Animals, Wild/physiology/psychology; Behavior, Animal/*physiology; *Culture; Female; Humans; Imitative Behavior; Learning/*physiology; Pan troglodytes/*physiology/psychology; *Social Behavior; Technology
Abstract Half a century of dedicated field research has brought us from ignorance of our closest relatives to the discovery that chimpanzee communities resemble human cultures in possessing suites of local traditions that uniquely identify them. The collaborative effort required to establish this picture parallels the one set up to sequence the chimpanzee genome, and has revealed a complex social inheritance system that complements the genetic picture we are now developing.
Address Centre for Social Learning and Cognitive Evolution, and Scottish Primate Research Group, School of Psychology, University of St Andrews, St Andrews, Fife KY16 9JP, UK. a.whiten@st-and.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16136127 Approved no
Call Number refbase @ user @ Serial 730
Permanent link to this record
 

 
Author Terrace, H.S.
Title Chunking by a pigeon in a serial learning task Type Journal Article
Year 1987 Publication Nature Abbreviated Journal Nature
Volume 325 Issue (down) 7000 Pages 149-151
Keywords Animals; Cognition/*physiology; Columbidae/*physiology; Feedback; Learning/*physiology; Male
Abstract A basic principle of human memory is that lists that can be organized into memorable 'chunks' are easier to remember. Memory span is limited to a roughly constant number of chunks and is to a large extent independent of the amount of informaton contained in each chunk. Depending on the ingenuity of the code used to integrate discrete items into chunks, one can substantially increase the number of items that can be recalled correctly. Newly developed paradigms for studying memory in non-verbal organisms allow comparison of the abilities of human and non-human subjects to memorize lists. Here I present two types of evidence that pigeons 'chunk' 5-element lists whose components (colours and achromatic geometric forms) are clustered into distinct groups. Those lists were learned twice as rapidly as a homogeneous list of colours or heterogeneous lists in which the elements are not clustered. The pigeons were also tested for knowledge of the order of two elements drawn from the 5-element lists. They responded in the correct order only to those subsets that contained a chunk boundary. Thus chunking can be studied profitably in animal subjects; the cognitive processes that allow an organism to form chunks do no presuppose linguistic competence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:3808071 Approved no
Call Number Equine Behaviour @ team @ Serial 2792
Permanent link to this record
 

 
Author Rizzolatti, G.; Fogassi, L.; Gallese, V.
Title Mirrors of the mind Type Journal Article
Year 2006 Publication Scientific American Abbreviated Journal Sci Am
Volume 295 Issue (down) 5 Pages 54-61
Keywords Animals; Brain/*physiology; Cognition/*physiology; Discrimination (Psychology)/physiology; Emotions/physiology; Humans; Imitative Behavior; Learning/*physiology; Mental Processes/*physiology; Motor Activity/physiology; Neurons/physiology; Recognition (Psychology); Sensation/physiology
Abstract
Address Neurosciences Department, University of Parma, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8733 ISBN Medium
Area Expedition Conference
Notes PMID:17076084 Approved no
Call Number Equine Behaviour @ team @ Serial 2829
Permanent link to this record
 

 
Author Jones, J.E.; Antoniadis, E.; Shettleworth, S.J.; Kamil, A.C.
Title A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula) Type Journal Article
Year 2002 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 116 Issue (down) 4 Pages 350-356
Keywords Animals; Behavior, Animal/physiology; Birds; Feeding Behavior/physiology; Learning/*physiology; *Mathematics; Random Allocation; Spatial Behavior/*physiology
Abstract Three avian species, a seed-caching corvid (Clark's nutcrackers; Nucifraga columbiana), a non-seed-caching corvid (jackdaws; Corvus monedula), and a non-seed-caching columbid (pigeons; Columba livia), were tested for ability to learn to find a goal halfway between 2 landmarks when distance between the landmarks varied during training. All 3 species learned, but jackdaws took much longer than either pigeons or nutcrackers. The nutcrackers searched more accurately than either pigeons or jackdaws. Both nutcrackers and pigeons showed good transfer to novel landmark arrays in which interlandmark distances were novel, but inconclusive results were obtained from jackdaws. Species differences in this spatial task appear quantitative rather than qualitative and are associated with differences in natural history rather than phylogeny.
Address School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:12539930 Approved no
Call Number refbase @ user @ Serial 369
Permanent link to this record
 

 
Author Watanabe, S.; Troje, N.F.
Title Towards a “virtual pigeon”: a new technique for investigating avian social perception Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue (down) 4 Pages 271-279
Keywords Animals; Behavioral Research/instrumentation/methods; Columbidae/*physiology; Computer Graphics; *Computer Simulation; Discrimination Learning/*physiology; Generalization (Psychology)/*physiology; Pattern Recognition, Visual/*physiology; Perceptual Masking/physiology; Rats; Recognition (Psychology)/physiology; *Social Behavior; User-Computer Interface
Abstract The purpose of the present study is to examine the applicability of a computer-generated, virtual animal to study animal cognition. Pigeons were trained to discriminate between movies of a real pigeon and a rat. Then, they were tested with movies of the computer-generated (CG) pigeon. Subjects showed generalization to the CG pigeon, however, they also responded to modified versions in which the CG pigeon was showing impossible movement, namely hopping and walking without its head bobbing. Hence, the pigeons did not attend to these particular details of the display. When they were trained to discriminate between the normal and the modified version of the CG pigeon, they were able to learn the discrimination. The results of an additional partial occlusion test suggest that the subjects used head movement as a cue for the usual vs. unusual CG pigeon discrimination.
Address Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108, Japan. swat@flet.keio.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17024508 Approved no
Call Number Equine Behaviour @ team @ Serial 2437
Permanent link to this record
 

 
Author Chiesa, A.D.; Pecchia, T.; Tommasi, L.; Vallortigara, G.
Title Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue (down) 4 Pages 281-293
Keywords Animals; Association Learning/*physiology; Chickens; *Cues; Dominance, Cerebral/*physiology; *Environment; Exploratory Behavior/*physiology; Logic; Space Perception/*physiology; Spatial Behavior/physiology
Abstract A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, via S. Anastasio 12, 34100, Trieste, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941155 Approved no
Call Number Equine Behaviour @ team @ Serial 2443
Permanent link to this record