|   | 
Details
   web
Records
Author Griffiths, D.P.; Clayton, N.S.
Title Testing episodic memory in animals: A new approach Type Journal Article
Year 2001 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 73 Issue 5 Pages 755-762
Keywords Episodic memory; Food-caching; Animal models
Abstract Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory “receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events.” Thus, episodic memory provides information about the `what' and `when' of events (`temporally dated experiences') and about `where' they happened (`temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 401
Permanent link to this record
 

 
Author Penn, D.; Potts, W.K.
Title Untrained mice discriminate MHC-determined odors Type Journal Article
Year 1998 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 64 Issue 3 Pages 235-243
Keywords Major histocompatibility complex; Pheromones; Olfaction; Kin recognition; Sexual selection
Abstract PENN, D. AND W. K. POTTS. Untrained mice distinguish MHC-determined odors. PHYSIOL BEHAV 64(3) 235-243, 1998.--Immune recognition occurs when foreign antigens are presented to T-lymphocytes by molecules encoded by the highly polymorphic genes of the major histocompatibility complex (MHC). House mice (Mus musculus) prefer to mate with individuals that have dissimilar MHC genes. Numerous studies indicate that mice recognize MHC identity through chemosensory cues; however, it is unclear whether odor is determined by classical, antigen-presenting MHC loci or closely linked genes. Previous studies have relied on training laboratory mice and rats to distinguish MHC-associated odors, but there are several reasons why training experiments may be inappropriate assays for testing if MHC genes affect odor. The aim of this study was to determine whether classical MHC genes affect individual odors and whether wild-derived mice can detect MHC-associated odors without training. In the first experiment, we found that wild-derived mice can be trained in a Y-maze to detect the odors of mice that differ genetically only in the MHC region. In the second and third experiments, we used a naturalistic habituation assay and found that wild-derived mice can, without training, distinguish the odors of mice that differ genetically only at one classical MHC locus (dm2 mutants).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4418
Permanent link to this record
 

 
Author Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; Richard, S.; Veissier, I.
Title Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare Type Journal Article
Year 2007 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 92 Issue 3 Pages 317-339
Keywords Stress; Animal welfare; HPA axis; Glucocorticoid hormones; Acth; Dexamethasone suppression test; Cattle; Pig; Fur animals; Mink; Fox; Poultry; Fish
Abstract Measuring HPA axis activity is the standard approach to the study of stress and welfare in farm animals. Although the reference technique is the use of blood plasma to measure glucocorticoid hormones (cortisol or corticosterone), several alternative methods such as the measurement of corticosteroids in saliva, urine or faeces have been developed to overcome the stress induced by blood sampling itself. In chronic stress situations, as is frequently the case in studies about farm animal welfare, hormonal secretions are usually unchanged but dynamic testing allows the demonstration of functional changes at several levels of the system, including the sensitization of the adrenal cortex to ACTH and the resistance of the axis to feedback inhibition by corticosteroids (dexamethasone suppression test). Beyond these procedural aspects, the main pitfall in the use of HPA axis activity is in the interpretation of experimental data. The large variability of the system has to be taken into consideration, since corticosteroid hormone secretion is usually pulsatile, follows diurnal and seasonal rhythms, is influenced by feed intake and environmental factors such as temperature and humidity, age and physiological state, just to cite the main sources of variation. The corresponding changes reflect the important role of glucocorticoid hormones in a number of basic physiological processes such as energy metabolism and central nervous system functioning. Furthermore, large differences have been found across species, breeds and individuals, which reflect the contribution of genetic factors and environmental influences, especially during development, in HPA axis functioning. Usually, these results will be integrated with data from behavioral observation, production and pathology records in a comprehensive approach of farm animal welfare.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4454
Permanent link to this record