|   | 
Details
   web
Records
Author Santamaria, S.; Bobbert, M.E.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Variation in free jumping technique within and among horses with little experience in show jumping Type Journal Article
Year 2004 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 65 Issue 7 Pages 938-944
Keywords *Acceleration; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Models, Biological; Video Recording
Abstract OBJECTIVE: To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among horses. ANIMALS: Fifteen 4-year-old Dutch Warmblood horses. PROCEDURE: The horses were raised under standardized conditions and trained in accordance with a fixed protocol for a short period. Subsequently, horses were analyzed kinematically during free jumping over a fence with a height of 1.05 m. RESULTS: Within-horse variation in all variables that quantified jumping technique was smaller than variation among horses. However, some horses had less variation than others. Height of the center of gravity (CG) at the apex of the jump ranged from 1.80 to 2.01 m among horses; this variation could be explained by the variation in vertical velocity of the CG at takeoff (r, 0.78). Horses that had higher vertical velocity at takeoff left the ground and landed again farther from the fence, had shorter push-off phases for the forelimbs and hind limbs, and generated greater vertical acceleration of the CG primarily during the hind limb push-off. However, all horses cleared the fence successfully, independent of jumping technique. CONCLUSIONS AND CLINICAL RELEVANCE: Each horse had its own jumping technique. Differences among techniques were characterized by variations in the vertical velocity of the CG at takeoff. It must be determined whether jumping performance later in life can be predicted from observing free jumps of young horses.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:15281652 Approved no
Call Number Equine Behaviour @ team @ Serial 3772
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Effect of early training on the jumping technique of horses Type Journal Article
Year 2005 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 66 Issue 3 Pages 418-424
Keywords Age Factors; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/growth & development/*physiology; Locomotion/*physiology; Models, Biological; Physical Conditioning, Animal/*methods
Abstract OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.
Address Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:15822585 Approved no
Call Number Equine Behaviour @ team @ Serial 4037
Permanent link to this record
 

 
Author Pearce, G.P.; May-Davis, S.; Greaves, D.
Title Femoral asymmetry in the Thoroughbred racehorse Type Journal Article
Year 2005 Publication Australian Veterinary Journal Abbreviated Journal Aust Vet J
Volume 83 Issue 6 Pages 367-370
Keywords Animals; Cumulative Trauma Disorders/pathology/*veterinary; Femur/*pathology; Horse Diseases/*pathology/physiopathology; Horses; Locomotion; Physical Conditioning, Animal/*physiology
Abstract OBJECTIVE: To investigate the occurrence of geometrical asymmetries in the macro-architecture of left and right femurs from Thoroughbred racehorses previously used in competitive training and racing in New South Wales, Australia. METHODS: Detailed postmortem measurements were made of 37 characteristics of left and right femurs from eleven Thoroughbred racehorses euthanased for reasons unrelated to the study. Measurements focused on articulating surfaces and sites of attachment of muscles and ligaments known to be associated with hindlimb locomotion. RESULTS: Five measurements were significantly larger in left compared to right femurs (P < 0.05). The regions showing significant differences between left and right limbs were proximal cranial and overhead medio-lateral widths, greater trochanter depth, depth of the fovea in the femoral head and distal inter-epicondylar width. CONCLUSION: The left-right differences in femoral morphology were associated with sites of muscle and ligament attachment known to be involved with hindlimb function in negotiating turns. These differences may be the result of selection pressure for racing performance on curved race tracks and/or adaptations related to asymmetrical loading of the outside hindlimb associated with repeated negotiation of turns on such tracks.
Address Faculty of Rural Management, University of Sydney, Leeds Parade, Orange, New South Wales 2800. gpp28@cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0005-0423 ISBN Medium
Area Expedition Conference
Notes PMID:15986917 Approved no
Call Number Equine Behaviour @ team @ Serial 4036
Permanent link to this record
 

 
Author Mrosovsky, N.; Shettleworth, S.J.
Title Further studies of the sea-finding mechanism in green turtle hatchlings Type Journal Article
Year 1974 Publication Behaviour Abbreviated Journal Behaviour
Volume 51 Issue 3-4 Pages 195-208
Keywords Animals; *Animals, Newborn/physiology; Contact Lenses; Locomotion; *Orientation; Retina/physiology; *Turtles/physiology; Visual Fields; *Visual Perception; Water
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0005-7959 ISBN Medium
Area Expedition Conference
Notes PMID:4447586 Approved no
Call Number refbase @ user @ Serial 389
Permanent link to this record
 

 
Author Bobbert, M.F.; Santamaria, S.
Title Contribution of the forelimbs and hindlimbs of the horse to mechanical energy changes in jumping Type Journal Article
Year 2005 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 208 Issue 2 Pages 249-260
Keywords Animals; Biomechanics; Forelimb/*physiology; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology; Muscle, Skeletal/*physiology; Time Factors
Abstract The purpose of the present study was to gain more insight into the contribution of the forelimbs and hindlimbs of the horse to energy changes during the push-off for a jump. For this purpose, we collected kinematic data at 240 Hz from 23 5-year-old Warmbloods (average mass: 595 kg) performing free jumps over a 1.15 m high fence. From these data, we calculated the changes in mechanical energy and the changes in limb length and joint angles. The force carried by the forelimbs and the amount of energy stored was estimated from the distance between elbow and hoof, assuming that this part of the leg behaved as a linear spring. During the forelimb push, the total energy first decreased by 3.2 J kg(-1) and then increased again by 4.2 J kg(-1) to the end of the forelimb push. At the end of the forelimb push, the kinetic energy due to horizontal velocity of the centre of mass was 1.6 J kg(-1) less than at the start, while the effective energy (energy contributing to jump height) was 2.3 J kg(-1) greater. It was investigated to what extent these changes could involve passive spring-like behaviour of the forelimbs. The amount of energy stored and re-utilized in the distal tendons during the forelimb push was estimated to be on average 0.4 J kg(-1) in the trailing forelimb and 0.23 J kg(-1) in the leading forelimb. This means that a considerable amount of energy was first dissipated and subsequently regenerated by muscles, with triceps brachii probably being the most important contributor. During the hindlimb push, the muscles of the leg were primarily producing energy. The total increase in energy was 2.5 J kg(-1) and the peak power output amounted to 71 W kg(-1).
Address Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, van der Boechorstraat 9, NL-1081 BT Amsterdam, The Netherlands. MFBobbert@fbw.vu.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15634844 Approved no
Call Number Serial 1895
Permanent link to this record
 

 
Author Etienne, A.S.; Maurer, R.; Seguinot, V.
Title Path integration in mammals and its interaction with visual landmarks Type Journal Article
Year 1996 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 199 Issue Pt 1 Pages 201-209
Keywords Animals; Cognition/physiology; Cricetinae; Gerbillinae; Humans; Locomotion/*physiology; Mammals/*physiology; Mesocricetus; Mice; Proprioception/physiology; Rats; Visual Pathways/*physiology; Visual Perception/*physiology
Abstract During locomotion, mammals update their position with respect to a fixed point of reference, such as their point of departure, by processing inertial cues, proprioceptive feedback and stored motor commands generated during locomotion. This so-called path integration system (dead reckoning) allows the animal to return to its home, or to a familiar feeding place, even when external cues are absent or novel. However, without the use of external cues, the path integration process leads to rapid accumulation of errors involving both the direction and distance of the goal. Therefore, even nocturnal species such as hamsters and mice rely more on previously learned visual references than on the path integration system when the two types of information are in conflict. Recent studies investigate the extent to which path integration and familiar visual cues cooperate to optimize the navigational performance.
Address Laboratoire d'Ethologie, FPSE, Universite de Geneve, Carouge, Switzerland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:8576691 Approved no
Call Number Equine Behaviour @ team @ Serial 2758
Permanent link to this record
 

 
Author Dutto, D.J.; Hoyt, D.F.; Clayton, H.M.; Cogger, E.A.; Wickler, S.J.
Title Moments and power generated by the horse (Equus caballus) hind limb during jumping Type Journal Article
Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 207 Issue Pt 4 Pages 667-674
Keywords Animals; Biomechanics; Hindlimb/*physiology; Horses/*physiology; Locomotion/*physiology
Abstract The ability to jump over an obstacle depends upon the generation of work across the joints of the propelling limb(s). The total work generated by one hind limb of a horse and the contribution to the total work by four joints of the hind limb were determined for a jump. It was hypothesized that the hip and ankle joints would have extensor moments performing positive work, while the knee would have a flexor moment and perform negative work during the jump. Ground reaction forces and sagittal plane kinematics were simultaneously recorded during each jumping trial. Joint moment, power and work were determined for the metatarsophalangeal (MP), tarsal (ankle), tibiofemoral (knee) and coxofemoral (hip) joints. The hip, knee and ankle all flexed and then extended and the MP extended and then flexed during ground contact. Consistent with our hypothesis, large extensor moments were observed at the hip and ankle joints and large flexor moments at the knee and MP joints throughout ground contact of the hind limb. Peak moments tended to occur earlier in stance in the proximal joints but peak power generation of the hind limb joints occurred at similar times except for the MP joint, with the hip and ankle peaking first followed by the MP joint. During the first portion of ground contact (approximately 40%), the net result of the joint powers was the absorption of power. During the remainder of the contact period, the hind limb generated power. This pattern of power absorption followed by power generation paralleled the power profiles of the hip, ankle and MP joints. The total work performed by one hind limb was 0.71 J kg(-1). Surprisingly, the knee produced 85% of the work (0.60 J kg(-1)) done by the hind limb, and the positive work performed by the knee occurred during the first 40% of the take-off. There is little net work generated by the other three joints over the entire take-off. Velocity of the tuber coxae (a landmark on the pelvis of the animal) was negative (downward) during the first 40% of stance, which perhaps reflects the negative work performed to decrease the potential energy during the first 40% of contact. During the final 60% of contact, the hip, ankle and MP joints generate positive work, which is reflected in the increase of the animal's potential energy.
Address Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA 91768, USA. ddutto@csupomona.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:14718509 Approved no
Call Number Equine Behaviour @ team @ Serial 3654
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M.
Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 207 Issue Pt 21 Pages 3639-3648
Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors
Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.
Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15371472 Approved no
Call Number Equine Behaviour @ team @ Serial 3658
Permanent link to this record
 

 
Author Wilson, A.M.; McGuigan, M.P.; Su, A.; van Den Bogert, A.J.
Title Horses damp the spring in their step Type Journal Article
Year 2001 Publication Nature Abbreviated Journal Nature
Volume 414 Issue 6866 Pages 895-899
Keywords Animals; Biomechanics; Elasticity; Forelimb; Gait; Horses/anatomy & histology/*physiology; Leg Bones/*physiology; Locomotion; Models, Biological; Muscle Fibers/physiology; Muscle, Skeletal/anatomy & histology/*physiology; Tendons/anatomy & histology/*physiology; Vibration
Abstract The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units.These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints. Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle. Despite being apparently redundant for such a mechanism, the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Address Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK. awilson@rvc.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:11780059 Approved no
Call Number Equine Behaviour @ team @ Serial 2300
Permanent link to this record
 

 
Author Wennerstrand, J.; Johnston, C.; Roethlisberger-Holm, K.; Erichsen, C.; Eksell, P.; Drevemo, S.
Title Kinematic evaluation of the back in the sport horse with back pain Type Journal Article
Year 2004 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 36 Issue 8 Pages 707-711
Keywords Animals; Back/*physiology; Back Pain/diagnosis/physiopathology/*veterinary; Biomechanics; Exercise Test/veterinary; Gait/*physiology; Horse Diseases/diagnosis/*physiopathology; Horses/anatomy & histology/*physiology; Locomotion/physiology; Lumbar Vertebrae/physiology; Range of Motion, Articular; Stress, Mechanical; Thoracic Vertebrae/physiology; Weight-Bearing
Abstract REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.
Address Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:15656501 Approved no
Call Number Equine Behaviour @ team @ Serial 3656
Permanent link to this record