toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blaisdell, A.P.; Cook, R.G. doi  openurl
  Title Integration of spatial maps in pigeons Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 7-16  
  Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology  
  Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.  
  Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15221636 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2521  
Permanent link to this record
 

 
Author Merchant, H.; Fortes, A.F.; Georgopoulos, A.P. doi  openurl
  Title Short-term memory effects on the representation of two-dimensional space in the rhesus monkey Type Journal Article
  Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 7 Issue 3 Pages 133-143  
  Keywords Analysis of Variance; Animals; Discrimination Learning/*physiology; Macaca mulatta; Male; Memory, Short-Term/*physiology; Mental Processes/*physiology; Pattern Recognition, Visual/*physiology; Space Perception/*physiology  
  Abstract Human subjects represent the location of a point in 2D space using two independent dimensions (x-y in Euclidean or radius-angle in polar space), and encode location in memory along these dimensions using two levels of representation: a fine-grain value and a category. Here we determined whether monkeys possessed the ability to represent location with these two levels of coding. A rhesus monkey was trained to reproduce the location of a dot in a circle by pointing, after a delay period, on the location where a dot was presented. Five different delay periods (0.5-5 s) were used. The results showed that the monkey used a polar coordinate system to represent the fine-grain spatial coding, where the radius and angle of the dots were encoded independently. The variability of the spatial response and reaction time increased with longer delays. Furthermore, the animal was able to form a categorical representation of space that was delay-dependent. The responses avoided the circumference and the center of the circle, defining a categorical radial prototype around one third of the total radial length. This radial category was observed only at delay durations of 3-5 s. Finally, the monkey also formed angular categories with prototypes at the obliques of the quadrants of the circle, avoiding the horizontal and vertical axes. However, these prototypes were only observed at the 5-s delay and on dots lying on the circumference. These results indicate that monkeys may possess spatial cognitive abilities similar to humans.  
  Address Brain Sciences Center (11B), Veterans Affairs Medical Center, One Veterans Drive, MN 55417, Minneapolis, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14669074 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2548  
Permanent link to this record
 

 
Author Fragaszy, D.; Johnson-Pynn, J.; Hirsh, E.; Brakke, K. doi  openurl
  Title Strategic navigation of two-dimensional alley mazes: comparing capuchin monkeys and chimpanzees Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 3 Pages 149-160  
  Keywords Animals; Cebus/*physiology; Choice Behavior/*physiology; Computer Peripherals; Female; Male; Maze Learning/*physiology; Neuropsychological Tests; Pan troglodytes/*physiology; Space Perception/*physiology; Species Specificity; User-Computer Interface  
  Abstract Planning is an important component of cognition that contributes, for example, to efficient movement through space. In the current study we presented novel two-dimensional alley mazes to four chimpanzees and three capuchin monkeys to identify the nature and efficiency of planning in relation to varying task parameters. All the subjects solved more mazes without error than expected by chance, providing compelling evidence that both species planned their choices in some manner. The probability of making a correct choice on mazes designed to be more demanding and presented later in the testing series was higher than on earlier, simpler mazes (chimpanzees), or unchanged (capuchin monkeys), suggesting microdevelopment of strategic choice. Structural properties of the mazes affected both species' choices. Capuchin monkeys were less likely than chimpanzees to take a correct path that initially led away from the goal but that eventually led to the goal. Chimpanzees were more likely to make an error by passing a correct path than by turning onto a wrong path. Chimpanzees and one capuchin made more errors on choices farther in sequence from the goal. Each species corrected errors before running into the end of an alley in approximately 40% of cases. Together, these findings suggest nascent planning abilities in each species, and the prospect for significant development of strategic planning capabilities on tasks presenting multiple simultaneous or sequential spatial relations. The computerized maze paradigm appears well suited to investigate movement planning and spatial perception in human and nonhuman primates alike.  
  Address Department of Psychology, University of Georgia, Athens, GA 30602, USA. doree@arches.uga.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12955584 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2557  
Permanent link to this record
 

 
Author Washburn, D.A.; Astur, R.S. doi  openurl
  Title Exploration of virtual mazes by rhesus monkeys (Macaca mulatta) Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 3 Pages 161-168  
  Keywords Animals; Choice Behavior/*physiology; Computer Peripherals; Macaca mulatta/*physiology; Male; Maze Learning/*physiology; Space Perception/*physiology; User-Computer Interface  
  Abstract A chasm divides the huge corpus of maze studies found in the literature, with animals tested in mazes on the one side and humans tested with mazes on the other. Advances in technology and software have made possible the production and use of virtual mazes, which allow humans to navigate computerized environments and thus for humans and nonhuman animals to be tested in comparable spatial domains. In the present experiment, this comparability is extended even further by examining whether rhesus monkeys (Macaca mulatta) can learn to explore virtual mazes. Four male macaques were trained to manipulate a joystick so as to move through a virtual environment and to locate a computer-generated target. The animals succeeded in learning this task, and located the target even when it was located in novel alleys. The search pattern within the maze for these animals resembled the pattern of maze navigation observed for monkeys that were tested on more traditional two-dimensional computerized mazes.  
  Address Department of Psychology, Georgia State University, Atlanta, GA 30303, USA. dwashburn@gsu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12750961 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2569  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print