|   | 
Details
   web
Records
Author Ginther, O.J.; Lara, A.; Leoni, M.; Bergfelt, D.R.
Title Herding and snaking by the harem stallion in domestic herds Type Journal Article
Year 2002 Publication Theriogenology Abbreviated Journal
Volume 57 Issue 8 Pages (up) 2139-2146
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 1; Export Date: 21 October 2008 Approved no
Call Number Equine Behaviour @ team @ Serial 4516
Permanent link to this record
 

 
Author Seyfarth, R.M.; Cheney, D.L.
Title What are big brains for? Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 7 Pages (up) 4141-4142
Keywords Animals; Brain/*anatomy & histology; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior
Abstract
Address Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA. seyfarth@psych.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11929989 Approved no
Call Number refbase @ user @ Serial 692
Permanent link to this record
 

 
Author Reader, S.M.; Laland, K.N.
Title Social intelligence, innovation, and enhanced brain size in primates Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 7 Pages (up) 4436-4441
Keywords Animals; Brain/*anatomy & histology; Evolution; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior
Abstract Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and “intelligence” are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute “executive” brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.
Address Department of Zoology, University of Cambridge, High Street, Madingley, Cambridge CB3 8AA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11891325 Approved no
Call Number Serial 2149
Permanent link to this record
 

 
Author Chase, I.D.; Tovey, C.; Spangler-Martin, D.; Manfredonia, M.
Title Individual differences versus social dynamics in the formation of animal dominance hierarchies Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 8 Pages (up) 5744-5749
Keywords Animals; *Behavior, Animal; Fishes; Humans; *Social Behavior; *Social Dominance
Abstract Linear hierarchies, the classical pecking-order structures, are formed readily in both nature and the laboratory in a great range of species including humans. However, the probability of getting linear structures by chance alone is quite low. In this paper we investigate the two hypotheses that are proposed most often to explain linear hierarchies: they are predetermined by differences in the attributes of animals, or they are produced by the dynamics of social interaction, i.e., they are self-organizing. We evaluate these hypotheses using cichlid fish as model animals, and although differences in attributes play a significant part, we find that social interaction is necessary for high proportions of groups with linear hierarchies. Our results suggest that dominance hierarchy formation is a much richer and more complex phenomenon than previously thought, and we explore the implications of these results for evolutionary biology, the social sciences, and the use of animal models in understanding human social organization.
Address Department of Sociology, State University of New York, Stony Brook, NY 11794-4356, USA. Ichase@notes.cc.sunysb.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11960030 Approved no
Call Number refbase @ user @ Serial 442
Permanent link to this record
 

 
Author Haruta, N.; Kitagawa, T.
Title Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin Type Journal Article
Year 2002 Publication Biochemistry Abbreviated Journal Biochemistry
Volume 41 Issue 21 Pages (up) 6595-6604
Keywords Animals; Apoproteins/*chemistry; Circular Dichroism; Holoenzymes/chemistry; Horses; Hydrochloric Acid/chemistry; Hydrogen-Ion Concentration; Imidazoles/chemistry; Kinetics; Models, Molecular; Myoglobin/*chemistry; Peptide Fragments/chemistry; *Protein Folding; Protein Structure, Secondary; Spectrum Analysis, Raman/*methods; Tryptophan/*chemistry; Ultraviolet Rays; Whales
Abstract The 244-nm excited transient UV resonance Raman spectra are observed for the refolding intermediates of horse apomyoglobin (h-apoMb) with a newly constructed mixed flow cell system, and the results are interpreted on the basis of the spectra observed for the equilibrium acid unfolding of the same protein. The dead time of mixing, which was determined with the appearance of UV Raman bands of imidazolium upon mixing of imidazole with acid, was 150 micros under the flow rate that was adopted. The pH-jump experiments of h-apoMb from pH 2.2 to 5.6 conducted with this device demonstrated the presence of three folding intermediates. On the basis of the analysis of W3 and W7 bands of Trp7 and Trp14, the first intermediate, formed before 250 micros, involved incorporation of Trp14 into the alpha-helix from a random coil. The frequency shift of the W3 band of Trp14 observed for this process was reproduced with a model peptide of the A helix when it forms the alpha-helix. In the second intermediate, formed around 1 ms after the start of refolding, the surroundings of both Trp7 and Trp14 were significantly hydrophobic, suggesting the formation of the hydrophobic core. In the third intermediate appearing around 3 ms, the hydrophobicity was relaxed to the same level as that of the pH 4 equilibrium intermediate, which was investigated in detail with the stationary state technique. The change from the third intermediate to the native state needs more time than 40 ms, while the appearance of the native spectrum after the mixing of the same solutions was confirmed separately.
Address School of Mathematical and Physical Sciences, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-2960 ISBN Medium
Area Expedition Conference
Notes PMID:12022863 Approved no
Call Number Equine Behaviour @ team @ Serial 3785
Permanent link to this record
 

 
Author Jansen, T.; Forster, P.; Levine, M.A.; Oelke, H.; Hurles, M.; Renfrew, C.; Weber, J.; Olek, K.
Title Mitochondrial DNA and the origins of the domestic horse Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 16 Pages (up) 10905-10910
Keywords Animals; Animals, Domestic/classification/*genetics; Base Sequence; DNA, Complementary; *DNA, Mitochondrial; *Evolution, Molecular; Horses/classification/*genetics; Molecular Sequence Data; Phylogeny
Abstract The place and date of the domestication of the horse has long been a matter for debate among archaeologists. To determine whether horses were domesticated from one or several ancestral horse populations, we sequenced the mitochondrial D-loop for 318 horses from 25 oriental and European breeds, including American mustangs. Adding these sequences to previously published data, the total comes to 652, the largest currently available database. From these sequences, a phylogenetic network was constructed that showed that most of the 93 different mitochondrial (mt)DNA types grouped into 17 distinct phylogenetic clusters. Several of the clusters correspond to breeds and/or geographic areas, notably cluster A2, which is specific to Przewalski's horses, cluster C1, which is distinctive for northern European ponies, and cluster D1, which is well represented in Iberian and northwest African breeds. A consideration of the horse mtDNA mutation rate together with the archaeological timeframe for domestication requires at least 77 successfully breeding mares recruited from the wild. The extensive genetic diversity of these 77 ancestral mares leads us to conclude that several distinct horse populations were involved in the domestication of the horse.
Address Biopsytec Analytik GmbH, Marie-Curie-Strasse 1, 53359 Rheinbach, Germany. jansen@biopsytec.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:12130666 Approved no
Call Number refbase @ user @ Serial 772
Permanent link to this record