toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wilson, M.T.; Ranson, R.J.; Masiakowski, P.; Czarnecka, E.; Brunori, M. openurl 
  Title A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase) Type Journal Article
  Year 1977 Publication European Journal of Biochemistry / FEBS Abbreviated Journal Eur J Biochem  
  Volume 77 Issue 1 Pages (down) 193-199  
  Keywords Animals; Cyanides; *Cytochrome c Group/metabolism; Ferric Compounds; Horses; Hydrogen-Ion Concentration; Imidazoles; Kinetics; Mathematics; Myocardium/enzymology; *Oligopeptides/metabolism; *Peptide Fragments/metabolism; Protein Binding; Spectrophotometry; Temperature  
  Abstract The ferric form of the haem undecapeptide, derived from horse cytochrome c by peptic digestion, undergoes at least three pH-induced transitions with pK values of 3.4, 5.8 and 7.6. Temperature-jump experiments suggest that the first of these is due to the binding of a deprotonated imidazole group to the feric iron while the second and third arise from the binding of the two available amino groups present (the alpha-NH2 of valine and the epsilon-NH2 of lysine). Molecular models indicate that steric retraints on the peptide dictate that these amino groups may only coordinate to iron atoms via intermolecular bonds, thus leading to the polymerization of the peptide. Cyanide binding studies are in agreement with these conclusions and also yield a value of 3.6 X 10(6) M-1 s-1 for the intrinsic combination constant of CN- anion with the haem. A model is proposed which describes the pH-dependent properties of the ferric undecapeptide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20304 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3814  
Permanent link to this record
 

 
Author Wilson, M.T.; Silvestrini, M.C.; Morpurgo, L.; Brunori, M. openurl 
  Title Electron transfer kinetics between Rhus vernicifera stellacyanin and cytochrome c (horse heart cytochrome c and Pseudomonas cytochrome c551) Type Journal Article
  Year 1979 Publication Journal of Inorganic Biochemistry Abbreviated Journal J Inorg Biochem  
  Volume 11 Issue 2 Pages (down) 95-100  
  Keywords Animals; Copper; Cytochrome c Group/*metabolism; Electron Transport; Kinetics; Metalloproteins/*metabolism; Plant Proteins/*metabolism; *Plants, Toxic; Pseudomonas aeruginosa/*metabolism; Toxicodendron/*metabolism  
  Abstract The electron transfer reactions between Rhus vernicifera stellacyanin and either horse heart cytochrome c or Pseudomonas aeruginosa cytochrome c551 were investigated by rapid reaction techniques. The time course of electron transfer is monophasic under all conditions, and thus consistent with a simple formulation of the reaction. Both stopped-flow and temperature-jump experiments yield equilibrium constants in reasonable agreement with values calculated from the redox potentials. The differences in reaction rate between the two cytochromes and stellacyanin are discussed in terms of the Marcus theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-0134 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:228006 Approved no  
  Call Number refbase @ user @ Serial 3879  
Permanent link to this record
 

 
Author Kihara, H. url  openurl
  Title Comparison of the redox reactions of various types of cytochrome c with iron hexacyanides Type Journal Article
  Year 1981 Publication Biochimica et Biophysica Acta (BBA) – Bioenergetics Abbreviated Journal  
  Volume 634 Issue Pages (down) 93-104  
  Keywords Cytochrome c; Redox reaction; Iron hexacyanide; Temperature jump; Electron transfer  
  Abstract The dynamic behavior of various types of cytochromes c in the redox reaction with iron hexacyanides was studied using a temperature-jump method in order to elucidate the molecular mechanism of the redox reaction of cytochromes with their oxidoreductants. Transmittance after the temperature jump changed through a single exponential decay for all cytochromes investigated. Under a constant concentration of anion, the redox reaction of various types of cytochrome c with iron hexacyanides was analyzed according to the scheme: Ki=kt/k-i (i=1,2,3) where C(III) and C(II) are ferric and ferrous cytochromes, respectively, Fe(III) and Fe(II) are ferri- and ferrocyanides, respectively, C(III) [middle dot] Fe(II) is the ferricytochrome-ferrocyanide complex and C(II) [middle dot] Fe(III) is the ferrocytochrome-ferricyanide complex. When step B is slower than the other two steps A and C, τ-1 can be represented approximately as where the bar over the variables denotes the equilibrium value. In a large excess of ferrocyanide against cytochrome, we can estimate k2, k-2, K1 and K3 independently. In the case of horse cytochrome c at 18[degree sign]C in 0.1 M phosphate buffer at pH 7 with 0.3 M KNO3, the estimated parameters are k2 = 100 +/- 50 s-1, k-2 = (3.5 +/- 1.0) [middle dot] 103 s-1, K1 = 15 +/- 7 M-1 and K3 = (8.5 +/- 1.5) [middle dot] 10-4 M. From the same experiments for seven cytochromes (cytochrome c from horse, tuna, Candida krusei, Saccharomyces oviformis, Rhodospirillum rubrum cytochrome c2, Spirulina platensis cytochrome c-554 and Thermus thermophilus cytochrome c-552), the following results can be deduced. (1) Each parameter defined in the scheme above (k2, k-2, K1, K3) diverged beyond the error range. Above all, k2 values of cytochromes c-554 and c-552 are as large as 1 [middle dot] 104 s-1 and much larger than those for the other cytochromes (to 50 approx. 700 S-1). (2) The variance of k2K1 and k-2/K3 are relatively less than the variances of individual parameters (k2, k-2, K1 and K3), which suggests that the values of k2K1 and k-2/K3 have been conserved during the course of evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3980  
Permanent link to this record
 

 
Author Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 331 Issue 1 Pages (down) 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
 

 
Author Saigo, S. openurl 
  Title Kinetic and equilibrium studies of alkaline isomerization of vertebrate cytochromes c Type Journal Article
  Year 1981 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 669 Issue 1 Pages (down) 13-20  
  Keywords Amino Acid Sequence; Animals; Cytochrome c Group/*metabolism; Dogs; Hydrogen-Ion Concentration; Isomerism; Kinetics; Vertebrates/metabolism  
  Abstract Equilibria and kinetics of alkaline isomerization of seven ferricytochromes c from vertebrates were studied by pH-titration and pH-jump methods in the pH region of 7-12. In the equilibrium behavior, no significant difference was detected among the cytochromes c, whereas marked differences in the kinetic behavior were observed. According to the kinetic behavior of the isomerization, the cytochromes c examined fall into three classes: Group I (horse, sheep, dog and pigeon cytochromes c), Group II (tuna and bonito cytochromes c) and Group III (rhesus monkey cytochrome c). The kinetic results are interpreted in terms of the sequential scheme: Neutral form in equilibrium with fast Transient form in equilibrium with slow Alkaline form where the neutral and alkaline forms are the species stable at neutral and alkaline pH, respectively, and the transient form is a kinetic intermediate. From comparison of the primary sequences of the seven cytochromes c and the classification of these cytochromes c, it is concluded that the amino acid substitution Phe/Tyr at the 46-th position has a major influence on the kinetic behavior. In Group II and III cytochromes c, the ionization of Tyr-46 is suggested to bring about loosening of the heme crevice and thus facilitate the ligand replacement involved in the isomerization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6271238 Approved no  
  Call Number refbase @ user @ Serial 3871  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print