|   | 
Details
   web
Records
Author Fiset, S.; Landry, F.; Ouellette, M.
Title Egocentric search for disappearing objects in domestic dogs: evidence for a geometric hypothesis of direction Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages (up) 1-12
Keywords Animals; Dogs/*psychology; Female; Form Perception; Male; Mental Recall; *Motion Perception; Orientation; Problem Solving; *Space Perception
Abstract In several species, the ability to locate a disappearing object is an adaptive component of predatory and social behaviour. In domestic dogs, spatial memory for hidden objects is primarily based on an egocentric frame of reference. We investigated the geometric components of egocentric spatial information used by domestic dogs to locate an object they saw move and disappear. In experiment 1, the distance and the direction between the position of the animal and the hiding location were put in conflict. Results showed that the dogs primarily used the directional information between their own spatial coordinates and the target position. In experiment 2, the accuracy of the dogs in finding a hidden object by using directional information was estimated by manipulating the angular deviation between adjacent hiding locations and the position of the animal. Four angular deviations were tested: 5, 7.5, 10 and 15 degrees . Results showed that the performance of the dogs decreased as a function of the angular deviations but it clearly remained well above chance, revealing that the representation of the dogs for direction is precise. In the discussion, we examine how and why domestic dogs determine the direction in which they saw an object disappear.
Address Secteur Sciences Humaines, Universite de Moncton, Campus d'Edmundston, Edmundston, New-Brunswick, Canada E3V 2S8. sfiset@umce.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15750805 Approved no
Call Number Equine Behaviour @ team @ Serial 2489
Permanent link to this record
 

 
Author Blaisdell, A.P.; Cook, R.G.
Title Integration of spatial maps in pigeons Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 1 Pages (up) 7-16
Keywords Animals; Appetitive Behavior/physiology; Association Learning/*physiology; Columbidae/*physiology; Conditioning, Classical/physiology; *Cues; Problem Solving/*physiology; Space Perception/*physiology; Spatial Behavior/physiology
Abstract The integration of spatial maps in pigeons was investigated using a spatial analog to sensory preconditioning. The pigeons were tested in an open-field arena in which they had to locate hidden food among a 4x4 grid of gravel-filled cups. In phase 1, the pigeons were exposed to a consistent spatial relationship (vector) between landmark L (a red L-shaped block of wood), landmark T (a blue T-shaped block of wood) and the hidden food goal. In phase 2, the pigeons were then exposed to landmark T with a different spatial vector to the hidden food goal. Following phase 2, pigeons were tested with trials on which they were presented with only landmark L to examine the potential integration of the phase 1 and 2 vectors via their shared common elements. When these test trials were preceded by phase 1 and phase 2 reminder trials, pigeons searched for the goal most often at a location consistent with their integration of the L-->T phase 1 and T-->phase 2 goal vectors. This result indicates that integration of spatial vectors acquired during phases 1 and 2 allowed the pigeons to compute a novel L-->goal vector. This suggests that spatial maps may be enlarged by successively integrating additional spatial information through the linkage of common elements.
Address Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA. blaisdell@psych.ucla.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15221636 Approved no
Call Number Equine Behaviour @ team @ Serial 2521
Permanent link to this record
 

 
Author Alves, C.; Chichery, R.; Boal, J.G.; Dickel, L.
Title Orientation in the cuttlefish Sepia officinalis: response versus place learning Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages (up) 29-36
Keywords Animals; *Decapodiformes; Exploratory Behavior; *Maze Learning; Memory; *Space Perception
Abstract Several studies have demonstrated that mammals, birds and fish use comparable spatial learning strategies. Unfortunately, except in insects, few studies have investigated spatial learning mechanisms in invertebrates. Our study aimed to identify the strategies used by cuttlefish (Sepia officinalis) to solve a spatial task commonly used with vertebrates. A new spatial learning procedure using a T-maze was designed. In this maze, the cuttlefish learned how to enter a dark and sandy compartment. A preliminary test confirmed that individual cuttlefish showed an untrained side-turning preference (preference for turning right or left) in the T-maze. This preference could be reliably detected in a single probe trial. In the following two experiments, each individual was trained to enter the compartment opposite to its side-turning preference. In Experiment 1, distal visual cues were provided around the maze. In Experiment 2, the T-maze was surrounded by curtains and two proximal visual cues were provided above the apparatus. In both experiments, after acquisition, strategies used by cuttlefish to orient in the T-maze were tested by creating a conflict between the formerly rewarded algorithmic behaviour (turn, response learning) and the visual cues identifying the goal (place learning). Most cuttlefish relied on response learning in Experiment 1; the two strategies were used equally often in Experiment 2. In these experiments, the salience of cues provided during the experiment determined whether cuttlefish used response or place learning to solve this spatial task. Our study demonstrates for the first time the presence of multiple spatial strategies in cuttlefish that appear to closely parallel those described in vertebrates.
Address Laboratoire de Physiologie du Comportement des Cephalopodes, Universite de Caen, Esplanade de la Paix, 14032, Caen cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16794852 Approved no
Call Number Equine Behaviour @ team @ Serial 2461
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G.
Title How fish do geometry in large and in small spaces Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 1 Pages (up) 47-54
Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception
Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.
Address Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16794851 Approved no
Call Number Equine Behaviour @ team @ Serial 2462
Permanent link to this record
 

 
Author Collier-Baker, E.; Davis, J.M.; Nielsen, M.; Suddendorf, T.
Title Do chimpanzees (Pan troglodytes) understand single invisible displacement? Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages (up) 55-61
Keywords Animals; Behavior, Animal; *Cognition; Male; Pan troglodytes/*psychology; *Space Perception; *Spatial Behavior; Task Performance and Analysis; *Visual Perception
Abstract Previous research suggests that chimpanzees understand single invisible displacement. However, this Piagetian task may be solvable through the use of simple search strategies rather than through mentally representing the past trajectory of an object. Four control conditions were thus administered to two chimpanzees in order to separate associative search strategies from performance based on mental representation. Strategies involving experimenter cue-use, search at the last or first box visited by the displacement device, and search at boxes adjacent to the displacement device were systematically controlled for. Chimpanzees showed no indications of utilizing these simple strategies, suggesting that their capacity to mentally represent single invisible displacements is comparable to that of 18-24-month-old children.
Address Early Cognitive Development Unit, School of Psychology, University of Queensland, Brisbane, Queensland 4072, Australia. e.collier-baker@psy.uq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163481 Approved no
Call Number Equine Behaviour @ team @ Serial 2482
Permanent link to this record
 

 
Author Vlasak, A.N.
Title Global and local spatial landmarks: their role during foraging by Columbian ground squirrels (Spermophilus columbianus) Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 1 Pages (up) 71-80
Keywords Animals; Cues; Feeding Behavior/*psychology; Female; *Memory; Mental Recall; Orientation; Sciuridae/*psychology; *Space Perception; *Spatial Behavior
Abstract Locating food and refuge is essential for an animal's survival. However, little is known how mammals navigate under natural conditions and cope with given environmental constraints. In a series of six experiments, I investigated landmark-based navigation in free-ranging Columbian ground squirrels (Spermophilus columbianus). Squirrels were trained individually to find a baited platform within an array of nine identical platforms and artificial landmarks set up on their territories. After animals learned the location of the food platform in the array, the position of the latter with respect to local artificial, local natural, and global landmarks was manipulated, and the animal's ability to find the food platform was tested. When only positions of local artificial landmarks were changed, squirrels located food with high accuracy. When the location of the array relative to global landmarks was altered, food-finding accuracy decreased but remained significant. In the absence of known global landmarks, the presence of a familiar route and natural local landmarks resulted in significant but not highly accurate performance. Squirrels likely relied on multiple types of cues when orienting towards a food platform. Local landmarks were used only as a secondary mechanism of navigation, and were not attended to when a familiar route and known global landmarks were present. This study provided insights into landmark use by a wild mammal in a natural situation, and it demonstrated that an array of platforms can be employed to investigate landmark-based navigation under such conditions.
Address Biology Department, University of Pennsylvania, Philadelphia, PA 19104, USA. avlasak@sas.upenn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16163480 Approved no
Call Number Equine Behaviour @ team @ Serial 2483
Permanent link to this record
 

 
Author Fortes, A.F.; Merchant, H.; Georgopoulos, A.P.
Title Comparative and categorical spatial judgments in the monkey: “high” and “low” Type Journal Article
Year 2004 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 7 Issue 2 Pages (up) 101-108
Keywords Animals; *Classification; Cognition; *Discrimination Learning; Form Perception; Macaca mulatta/*parasitology; Male; *Pattern Recognition, Visual; Semantics; *Space Perception
Abstract Adult human subjects can classify the height of an object as belonging to either of the “high” or “low” categories by utilizing an abstract concept of midline that divides the vertical dimension into two halves. Children lack this abstract concept of midline, do not have a sense that these categories are directional opposites, and their categorical and comparative usages of high(er) or low(er) are restricted to the corresponding poles. We investigated the abilities of a rhesus monkey to perform categorical judgments in space. We were also interested in the presence of the congruity effect (a decrease in response time when the objects compared are closer to the category pole) in the monkey. The presence of this phenomenon in the monkey would allow us to relate the behavior of the animal to the two major competing hypotheses that have been suggested to explain the congruity effect in humans: the analog and semantic models. The monkey was trained in delayed match-to-sample tasks in which it had to categorize objects as belonging to either a high or low category. The monkey was able to generate an abstract notion of midline in a fashion similar to that of adult human subjects. The congruity effect was also present in the monkey. These findings, taken together with the notion that monkeys are not considered to think in propositional terms, may favor an analog comparison model in the monkey.
Address Brain Sciences Center, Veterans Affairs Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15069609 Approved no
Call Number Equine Behaviour @ team @ Serial 2531
Permanent link to this record
 

 
Author Held, S.; Baumgartner, J.; Kilbride, A.; Byrne, R.W.; Mendl, M.
Title Foraging behaviour in domestic pigs (Sus scrofa): remembering and prioritizing food sites of different value Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 2 Pages (up) 114-121
Keywords Animals; *Appetitive Behavior; *Association Learning; Feeding Behavior/*psychology; Female; *Space Perception; Sus scrofa/*psychology
Abstract This experiment investigated whether domestic pigs can remember the locations of food sites of different relative value, and how a restricted retrieval choice affects their foraging behaviour. Nine juvenile female pigs were trained to relocate two food sites out of a possible eight in a spatial memory task. The two baited sites contained different amounts of food and an obstacle was added to the smaller amount to increase handling time. On each trial, a pig searched for the two baited sites (search visit). Once it had found and eaten the bait, it returned for a second (relocation) visit, in which the two same sites were baited. Baited sites were changed between trials. All subjects learnt the task. When allowed to retrieve both baits, the subjects showed no preference for retrieving a particular one first (experiment 1). When they were allowed to retrieve only one bait, a significant overall preference for retrieving the larger amount emerged across subjects (experiment 2). To test whether this preference reflected an avoidance of the obstacle with the smaller bait, 15 choice-restricted control trials were conducted. In control trials obstacles were present with both baits. Pigs continued to retrieve the larger bait, indicating they had discriminated between the two food sites on the basis of quantity or profitability and adjusted their behaviour accordingly when the relocation choice was restricted. This suggests for the first time that domestic pigs have the ability to discriminate between food sites of different relative value and to remember their respective locations.
Address Department of Clinical Veterinary Science, Centre for Behavioural Biology, University of Bristol, Langford, BS40 5DU, UK. suzanne.held@bris.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15871038 Approved no
Call Number Equine Behaviour @ team @ Serial 2487
Permanent link to this record
 

 
Author Dudchenko, P.A.; Davidson, M.
Title Rats use a sense of direction to alternate on T-mazes located in adjacent rooms Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 2 Pages (up) 115-118
Keywords Animals; *Cognition; Male; *Maze Learning; Rats; Rats, Inbred Strains; Space Perception
Abstract Lister hooded rats were trained on a forced-sample T-maze alternation task in an environment lacking spatial landmarks. An early study of spontaneous alternation on the T-maze had shown that rats use a “spatial sense” to select alternate maze arms across mazes. As this phenomenon may provide a useful tool for studying the neural substrates of a directional sense, we wished to confirm this finding on a different version of the T-maze task, with well-trained animals. We found that rats successfully selected the appropriate maze arm when the choice phase of the task was presented on a second maze, oriented in the same direction, and located in an adjacent room. However, choice performance fell to chance level when the second maze was oriented 90 degrees relative to the first. This result suggests that the rats do not simply alternate turns across the two environments, but rather that they rely on a sense of direction that is carried across environments.
Address Department of Psychology, University of Stirling, Stirling FK9 4LA, UK. p.a.dudchenko@stir.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:12150036 Approved no
Call Number Equine Behaviour @ team @ Serial 2608
Permanent link to this record
 

 
Author Herrmann, E.; Melis, A.P.; Tomasello, M.
Title Apes' use of iconic cues in the object-choice task Type Journal Article
Year 2006 Publication Animal cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 2 Pages (up) 118-130
Keywords Animal Communication; Animals; *Appetitive Behavior; *Choice Behavior; *Cues; Female; Gorilla gorilla; Male; *Nonverbal Communication; Pan paniscus; Pan troglodytes; Pongo pygmaeus; *Problem Solving; Space Perception; Species Specificity; Statistics, Nonparametric
Abstract In previous studies great apes have shown little ability to locate hidden food using a physical marker placed by a human directly on the target location. In this study, we hypothesized that the perceptual similarity between an iconic cue and the hidden reward (baited container) would help apes to infer the location of the food. In the first two experiments, we found that if an iconic cue is given in addition to a spatial/indexical cue – e.g., picture or replica of a banana placed on the target location – apes (chimpanzees, bonobos, orangutans, gorillas) as a group performed above chance. However, we also found in two further experiments that when iconic cues were given on their own without spatial/indexical information (iconic cue held up by human with no diagnostic spatial/indexical information), the apes were back to chance performance. Our overall conclusion is that although iconic information helps apes in the process of searching hidden food, the poor performance found in the last two experiments is due to apes' lack of understanding of the informative (cooperative) communicative intention of the experimenter.
Address Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. eherrman@eva.mpg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16395566 Approved no
Call Number Serial 14
Permanent link to this record