|   | 
Details
   web
Records
Author Pierce, M.M.; Nall, B.T.
Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume 298 Issue 5 Pages (down) 955-969
Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics
Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.
Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:10801361 Approved no
Call Number refbase @ user @ Serial 3853
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages (down) 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Cilnis, M.J.; Kang, W.; Weaver, S.C.
Title Genetic conservation of Highlands J viruses Type Journal Article
Year 1996 Publication Virology Abbreviated Journal Virology
Volume 218 Issue 2 Pages (down) 343-351
Keywords Alphavirus/*genetics; Alphavirus Infections/transmission/veterinary/virology; Amino Acid Sequence; Animals; Base Sequence; Conserved Sequence; Disease Outbreaks; Encephalitis, Viral/veterinary/virology; *Evolution, Molecular; Horses; Molecular Sequence Data; Phylogeny; RNA, Viral/genetics; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Nucleic Acid; Turkeys; Variation (Genetics)/*genetics
Abstract We studied molecular evolution of the mosquito-borne alphavirus Highlands J (HJ) virus by sequencing PCR products generated from 19 strains isolated between 1952 and 1994. Sequences of 1200 nucleotides including portions of the E1 gene and the 3' untranslated region revealed a relatively slow evolutionary rate estimated at 0.9-1.6 x 10(-4) substitutions per nucleotide per year. Phylogenetic trees indicated that all HJ viruses descended from a common ancestor and suggested the presence of one dominant lineage in North America. However, two or more minor lineages probably circulated simultaneously for periods of years to a few decades. Strains isolated from a horse suffering encephalitis, and implicated in a recent turkey outbreak, were not phylogenetically distinct from strains isolated in other locations during the same time periods. Our findings are remarkably similar to those we obtained previously for another North American alphavirus, eastern equine encephalomyelitis virus, with which Highlands J shares primary mosquito and avian hosts, geographical distribution, and ecology. These results support the hypotheses that the duration of the transmission season affects arboviral evolutionary rates and vertebrate host mobility influences genetic diversity.
Address Department of Biology, University of California, San Diego, La Jolla 92093-0116, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-6822 ISBN Medium
Area Expedition Conference
Notes PMID:8610461 Approved no
Call Number Equine Behaviour @ team @ Serial 2657
Permanent link to this record
 

 
Author Boucher, J.M.; Hanosset, R.; Augot, D.; Bart, J.M.; Morand, M.; Piarroux, R.; Pozet-Bouhier, F.; Losson, B.; Cliquet, F.
Title Detection of Echinococcus multilocularis in wild boars in France using PCR techniques against larval form Type Journal Article
Year 2005 Publication Veterinary Parasitology Abbreviated Journal Vet Parasitol
Volume 129 Issue 3-4 Pages (down) 259-266
Keywords Animals; Base Sequence; DNA, Helminth/chemistry/genetics; Echinococcosis/parasitology/pathology/*veterinary; Echinococcus multilocularis/*isolation & purification; Electron Transport Complex IV/chemistry/genetics; France; Histocytochemistry/veterinary; Liver/parasitology/pathology; Male; Molecular Sequence Data; Polymerase Chain Reaction/veterinary; Sequence Alignment; Sus scrofa/*parasitology; Swine Diseases/*parasitology/pathology
Abstract Recently, new data have been collected on the distribution and ecology of Echinococcus multilocularis in European countries. Different ungulates species such as pig, goat, sheep, cattle and horse are known to host incomplete development of larval E. multilocularis. We report a case of E. multilocularis portage in two wild boars from a high endemic area in France (Department of Jura). Histological examination was performed and the DNA was isolated from hepatic lesions then amplified by using three PCR methods in two distinct institutes. Molecular characterisation of PCR products revealed 99% nucleotide sequence homology with the specific sequence of the U1 sn RNA gene of E. multilocularis, 99 and 99.9% nucleotide sequence homology with the specific sequence of the cytochrome oxydase gene of Echinococcus genus and 99.9% nucleotide sequence homology with a genomic DNA sequence of Echinococcus genus for the first and the second wild boar, respectively.
Address AFSSA Nancy, Laboratoire d'Etudes et de Recherches sur la Rage et la Pathologie des Animaux Sauvages, Domaine de Pixerecourt-B.P. 9, Malzeville F 54220, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4017 ISBN Medium
Area Expedition Conference
Notes PMID:15845281 Approved no
Call Number Equine Behaviour @ team @ Serial 2629
Permanent link to this record
 

 
Author Ishida, N.; Oyunsuren, T.; Mashima, S.; Mukoyama, H.; Saitou, N.
Title Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse Type Journal Article
Year 1995 Publication Journal of Molecular Evolution Abbreviated Journal J Mol Evol
Volume 41 Issue 2 Pages (down) 180-188
Keywords Animals; Base Sequence; Chromosomes; Conserved Sequence/genetics; DNA, Mitochondrial/*genetics; Evolution; Genetic Variation/*genetics; Horses/*genetics; Molecular Sequence Data; *Phylogeny; RNA, Transfer, Pro/genetics; Sequence Alignment; Sequence Analysis, DNA
Abstract The noncoding region between tRNAPro and the large conserved sequence block is the most variable region in the mammalian mitochondrial DNA D-loop region. This variable region (ca. 270 bp) of four species of Equus, including Mongolian and Japanese native domestic horses as well as Przewalskii's (or Mongolian) wild horse, were sequenced. These data were compared with our recently published Thoroughbred horse mitochondrial DNA sequences. The evolutionary rate of this region among the four species of Equus was estimated to be 2-4 x 10(-8) per site per year. Phylogenetic trees of Equus species demonstrate that Przewalskii's wild horse is within the genetic variation among the domestic horse. This suggests that the chromosome number change (probably increase) of the Przewalskii's wild horse occurred rather recently.
Address Laboratory of Molecular and Cellular Biology, Japan Racing Association, Tokyo
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2844 ISBN Medium
Area Expedition Conference
Notes PMID:7666447 Approved no
Call Number Equine Behaviour @ team @ Serial 5042
Permanent link to this record