|   | 
Details
   web
Records
Author Moses, S.N.; Villate, C.; Ryan, J.D.
Title An investigation of learning strategy supporting transitive inference performance in humans compared to other species Type Journal Article
Year 2006 Publication Neuropsychologia Abbreviated Journal Neuropsychologia
Volume 44 Issue 8 Pages (down) 1370-1387
Keywords Adult; Analysis of Variance; Association Learning/*physiology; *Cognition; *Concept Formation; Female; Humans; *Logic; Male; Pattern Recognition, Visual/physiology; Photic Stimulation/methods; Reaction Time/physiology
Abstract Generalizations about neural function are often drawn from non-human animal models to human cognition, however, the assumption of cross-species conservation may sometimes be invalid. Humans may use different strategies mediated by alternative structures, or similar structures may operate differently within the context of the human brain. The transitive inference problem, considered a hallmark of logical reasoning, can be solved by non-human species via associative learning rather than logic. We tested whether humans use similar strategies to other species for transitive inference. Results are crucial for evaluating the validity of widely accepted assumptions of similar neural substrates underlying performance in humans and other animals. Here we show that successful transitive inference in humans is unrelated to use of associative learning strategies and is associated with ability to report the hierarchical relationship among stimuli. Our work stipulates that cross-species generalizations must be interpreted cautiously, since performance on the same task may be mediated by different strategies and/or neural systems.
Address Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada. smoses@rotman-baycrest.on.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-3932 ISBN Medium
Area Expedition Conference
Notes PMID:16503340 Approved no
Call Number refbase @ user @ Serial 153
Permanent link to this record
 

 
Author Gentner, T.Q.; Fenn, K.M.; Margoliash, D.; Nusbaum, H.C.
Title Recursive syntactic pattern learning by songbirds Type Journal Article
Year 2006 Publication Nature Abbreviated Journal Nature
Volume 440 Issue 7088 Pages (down) 1204-1207
Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/*physiology; Humans; *Language; Learning/*physiology; Linguistics; Models, Neurological; Semantics; Starlings/*physiology; Stochastic Processes
Abstract Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.
Address Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA. tgentner@ucsd.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:16641998 Approved no
Call Number refbase @ user @ Serial 353
Permanent link to this record
 

 
Author Grosenick, L.; Clement, T.S.; Fernald, R.D.
Title Fish can infer social rank by observation alone Type Journal Article
Year 2007 Publication Nature Abbreviated Journal Nature
Volume 445 Issue 7126 Pages (down) 429-432
Keywords Aggression/physiology; Animals; Cognition/*physiology; Female; Fishes/*physiology; Learning/*physiology; Male; Models, Biological; *Social Dominance; Territoriality
Abstract Transitive inference (TI) involves using known relationships to deduce unknown ones (for example, using A > B and B > C to infer A > C), and is thus essential to logical reasoning. First described as a developmental milestone in children, TI has since been reported in nonhuman primates, rats and birds. Still, how animals acquire and represent transitive relationships and why such abilities might have evolved remain open problems. Here we show that male fish (Astatotilapia burtoni) can successfully make inferences on a hierarchy implied by pairwise fights between rival males. These fish learned the implied hierarchy vicariously (as 'bystanders'), by watching fights between rivals arranged around them in separate tank units. Our findings show that fish use TI when trained on socially relevant stimuli, and that they can make such inferences by using indirect information alone. Further, these bystanders seem to have both spatial and featural representations related to rival abilities, which they can use to make correct inferences depending on what kind of information is available to them. Beyond extending TI to fish and experimentally demonstrating indirect TI learning in animals, these results indicate that a universal mechanism underlying TI is unlikely. Rather, animals probably use multiple domain-specific representations adapted to different social and ecological pressures that they encounter during the course of their natural lives.
Address Department of Biological Sciences, Stanford University, Stanford, California, 94305, USA. logang@stanford.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-4687 ISBN Medium
Area Expedition Conference
Notes PMID:17251980 Approved no
Call Number refbase @ user @ Serial 600
Permanent link to this record
 

 
Author Gould, J.L.
Title Animal cognition Type Journal Article
Year 2004 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 14 Issue 10 Pages (down) R372-5
Keywords Animals; Awareness; Behavior, Animal/*physiology; Cognition/*physiology; Concept Formation; Decision Making; Instinct; Intelligence/*physiology; Learning/*physiology; Species Specificity
Abstract
Address Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. gould@princeton.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:15186759 Approved no
Call Number Equine Behaviour @ team @ Serial 4169
Permanent link to this record
 

 
Author Beran, M.J.; Beran, M.M.; Harris, E.H.; Washburn, D.A.
Title Ordinal judgments and summation of nonvisible sets of food items by two chimpanzees and a rhesus macaque Type Journal Article
Year 2005 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 31 Issue 3 Pages (down) 351-362
Keywords Animals; Behavior, Animal; Chi-Square Distribution; Cognition; Color Perception/physiology; Female; *Food; Judgment/*physiology; Macaca mulatta; Male; Pan troglodytes; Serial Learning/*physiology; Size Perception
Abstract Two chimpanzees and a rhesus macaque rapidly learned the ordinal relations between 5 colors of containers (plastic eggs) when all containers of a given color contained a specific number of identical food items. All 3 animals also performed at high levels when comparing sets of containers with sets of visible food items. This indicates that the animals learned the approximate quantity of food items in containers of a given color. However, all animals failed in a summation task, in which a single container was compared with a set of 2 containers of a lesser individual quantity but a greater combined quantity. This difficulty was not overcome by sequential presentation of containers into opaque receptacles, but performance improved if the quantitative difference between sizes was very large.
Address Language Research Center, Georgia State University, Decatur, 30034, USA. mjberan@yahoo.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:16045389 Approved no
Call Number Equine Behaviour @ team @ Serial 2766
Permanent link to this record
 

 
Author Jones, J.E.; Antoniadis, E.; Shettleworth, S.J.; Kamil, A.C.
Title A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula) Type Journal Article
Year 2002 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 116 Issue 4 Pages (down) 350-356
Keywords Animals; Behavior, Animal/physiology; Birds; Feeding Behavior/physiology; Learning/*physiology; *Mathematics; Random Allocation; Spatial Behavior/*physiology
Abstract Three avian species, a seed-caching corvid (Clark's nutcrackers; Nucifraga columbiana), a non-seed-caching corvid (jackdaws; Corvus monedula), and a non-seed-caching columbid (pigeons; Columba livia), were tested for ability to learn to find a goal halfway between 2 landmarks when distance between the landmarks varied during training. All 3 species learned, but jackdaws took much longer than either pigeons or nutcrackers. The nutcrackers searched more accurately than either pigeons or jackdaws. Both nutcrackers and pigeons showed good transfer to novel landmark arrays in which interlandmark distances were novel, but inconclusive results were obtained from jackdaws. Species differences in this spatial task appear quantitative rather than qualitative and are associated with differences in natural history rather than phylogeny.
Address School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:12539930 Approved no
Call Number refbase @ user @ Serial 369
Permanent link to this record
 

 
Author Nakamura, K.
Title Perseverative errors in object discrimination learning by aged Japanese monkeys (Macaca fuscata) Type Journal Article
Year 2001 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 27 Issue 4 Pages (down) 345-353
Keywords Age Factors; Animals; Behavior, Animal/physiology; Cognition Disorders/*diagnosis/*physiopathology; Discrimination Learning/*physiology; Frontal Lobe/*physiopathology; Macaca; Neuropsychological Tests
Abstract To examine the nature of age-dependent cognitive decline, performance in terms of concurrent object discriminations was assessed in aged and nonaged Japanese monkeys (Macaca fuscata). Aged monkeys required more sessions and committed more errors than nonaged ones in the discriminations, even in simple object discriminations. Analyses of errors suggest that aged monkeys repeated the same errors and committed more errors when they chose a negative object at the 1st trial. A hypothesis analysis of behavior suggests that their incorrect choices were mainly due to object preference. Therefore, the impairment was probably caused by a failure to inhibit inappropriate responses. Together with previous neuropsychological findings, deficits of aged monkeys in the performance of object discriminations can be explained by dysfunction of the frontal cortex.
Address Department of Behavioral and Brain Sciences, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan. knakamur@pri.kyoto-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:11676085 Approved no
Call Number Equine Behaviour @ team @ Serial 2771
Permanent link to this record
 

 
Author Chiesa, A.D.; Pecchia, T.; Tommasi, L.; Vallortigara, G.
Title Multiple landmarks, the encoding of environmental geometry and the spatial logics of a dual brain Type Journal Article
Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 9 Issue 4 Pages (down) 281-293
Keywords Animals; Association Learning/*physiology; Chickens; *Cues; Dominance, Cerebral/*physiology; *Environment; Exploratory Behavior/*physiology; Logic; Space Perception/*physiology; Spatial Behavior/physiology
Abstract A series of place learning experiments was carried out in young chicks (Gallus gallus) in order to investigate how the geometry of a landmark array and that of a walled enclosure compete when disoriented animals could rely on both of them to re-orient towards the centre of the enclosure. A square-shaped array (four wooden sticks) was placed in the middle of a square-shaped enclosure, the two structures being concentric. Chicks were trained to ground-scratch to search for food hidden in the centre of the enclosure (and the array). To check for effects of array degradation, one, two, three or all landmarks were removed during test trials. Chicks concentrated their searching activity in the central area of the enclosure, but their accuracy was inversely contingent on the number of landmarks removed; moreover, the landmarks still present within the enclosure appeared to influence the shape of the searching patterns. The reduction in the number of landmarks affected the searching strategy of chicks, suggesting that they had focussed mainly on local cues when landmarks were present within the enclosure. When all the landmarks were removed, chicks searched over a larger area, suggesting an absolute encoding of distances from the local cues and less reliance on the relationships provided by the geometry of the enclosure. Under conditions of monocular vision, chicks tended to rely on different strategies to localize the centre on the basis of the eye (and thus the hemisphere) in use, the left hemisphere attending to details of the environment and the right hemisphere attending to the global shape.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, via S. Anastasio 12, 34100, Trieste, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941155 Approved no
Call Number Equine Behaviour @ team @ Serial 2443
Permanent link to this record
 

 
Author Macphail, E.M.
Title Cognitive function in mammals: the evolutionary perspective Type Journal Article
Year 1996 Publication Brain research. Cognitive brain research Abbreviated Journal Brain Res Cogn Brain Res
Volume 3 Issue 3-4 Pages (down) 279-290
Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis
Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.
Address Department of Psychology, University of York at Heslington, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-6410 ISBN Medium
Area Expedition Conference
Notes PMID:8806029 Approved no
Call Number refbase @ user @ Serial 603
Permanent link to this record
 

 
Author Dorrance, B.R.; Zentall, T.R.
Title Imitation of conditional discriminations in pigeons (Columba livia) Type Journal Article
Year 2002 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 116 Issue 3 Pages (down) 277-285
Keywords Animals; Behavior, Animal/physiology; Columbidae; Conditioning (Psychology)/*physiology; Discrimination Learning/*physiology; Habituation, Psychophysiologic; *Imitative Behavior; Light; Reinforcement (Psychology)
Abstract In the present experiments, the 2-action method was used to determine whether pigeons could learn to imitate a conditional discrimination. Demonstrator pigeons (Columba livia) stepped on a treadle in the presence of 1 light and pecked at the treadle in the presence of another light. Demonstration did not seem to affect acquisition of the conditional discrimination (Experiment 1) but did facilitate its reversal of the conditional discrimination (Experiments 2 and 3). The results suggest that pigeons are not only able to learn a specific behavior by observing another pigeon, but they can also learn under which circumstances to perform that behavior. The results have implications for proposed mechanisms of imitation in animals.
Address Department of Psychology, Augustana College, Rock Island, Illinois 61201, USA. psdorrance@augustana.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:12234078 Approved no
Call Number refbase @ user @ Serial 240
Permanent link to this record