|   | 
Details
   web
Records
Author Seghrouchni, M.; Elkasraoui, H.; Piro, M.; Alyakine, H.; Bouayad, H.; Chakir, J.; Tligui, N.; Elallali, K.; Azrib, R.
Title Osteoarticular radiographic findings of the distal forelimbs in Tbourida Horses Type Journal Article
Year 2019 Publication Heliyon Abbreviated Journal
Volume 5 Issue 9 Pages (up) e02514
Keywords Animal science; Pathophysiology; Animal behavior; Animal breeding; Veterinary medicine; Veterinary science; Horse; Radiographic findings; Forelimb; X-ray; Tbourida
Abstract Tbourida is a traditional Moroccan equestrian sport in which 15 horses gallop 200 m in a line while riders fire into the sky with muskets. The stop is the finale and representative demands of this equestrian event. Such particular sudden stop after a fast gallop requires a hyperextension of the metacarpophalangeal joint. Indeed, it is well known that Tbourida show predisposes horses to different injuries of the hard and soft tissues of the distal forelimbs. Yet, there is a paucity of research that examined such lesions. The aim of the present study was to investigate for the first time the type and the prevalence of osteoarticular findings in the distal forelimbs of Tbourida horses using radiographic images. The study was conducted on 127 Tbourida horses aged between 2.5 and 15 years old with 6-year-old horses being the most affected. Data analysis showed that 93,7% of horses exhibit degenerative joint lesions of the fetlock, 86,6% showed ossification of the ungual cartilage, 78,7% had enthesophytes associated with the deep digital flexor tendons, 81,1% had enthesophytes associated with the suspensory ligament branches, and 19,6% showed a particular exostosis on the first phalanx. This large number of lesions reflects how this sport is difficult for horses and also argues that animals are suffering from a lack of welfare and care in their husbandry management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6672
Permanent link to this record
 

 
Author Skedros, J.G.; Dayton, M.R.; Sybrowsky, C.L.; Bloebaum, R.D.; Bachus, K.N.
Title The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone Type Journal Article
Year 2006 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 209 Issue Pt 15 Pages (up) 3025-3042
Keywords Animals; Biomechanics; Bone and Bones/*physiology; Collagen/*physiology; Forelimb; Horses/*physiology
Abstract This study examined relative influences of predominant collagen fiber orientation (CFO), mineralization (% ash), and other microstructural characteristics on the mechanical properties of equine cortical bone. Using strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension), the relative mechanical importance of CFO and other material characteristics were examined in equine third metacarpals (MC3s). This model was chosen since it had a consistent non-uniform strain distribution estimated by finite element analysis (FEA) near mid-diaphysis of a thoroughbred horse, net tension in the dorsal/lateral cortices and net compression in the palmar/medial cortices. Bone specimens from regions habitually loaded in tension or compression were: (1) tested to failure in both axial compression and tension in order to contrast S-M-S vs non-S-M-S behavior, and (2) analyzed for CFO, % ash, porosity, fractional area of secondary osteonal bone, osteon cross-sectional area, and population densities of secondary osteons and osteocyte lacunae. Multivariate multiple regression analyses revealed that in S-M-S compression testing, CFO most strongly influenced total energy (pre-yield elastic energy plus post-yield plastic energy); in S-M-S tension testing CFO most strongly influenced post-yield energy and total energy. CFO was less important in explaining S-M-S elastic modulus, and yield and ultimate stress. Therefore, in S-M-S loading CFO appears to be important in influencing energy absorption, whereas the other characteristics have a more dominant influence in elastic modulus, pre-yield behavior and strength. These data generally support the hypothesis that differentially affecting S-M-S energy absorption may be an important consequence of regional histocompositional heterogeneity in the equine MC3. Data inconsistent with the hypothesis, including the lack of highly longitudinal collagen in the dorsal-lateral ;tension' region, paradoxical histologic organization in some locations, and lack of significantly improved S-M-S properties in some locations, might reflect the absence of a similar habitual strain distribution in all bones. An alternative strain distribution based on in vivo strain measurements, without FEA, on non-Thoroughbreds showing net compression along the dorsal-palmar axis might be more characteristic of the habitual loading of some of the bones that we examined. In turn, some inconsistencies might also reflect the complex torsion/bending loading regime that the MC3 sustains when the animal undergoes a variety of gaits and activities, which may be representative of only a portion of our animals, again reflecting the possibility that not all of the bones examined had similar habitual loading histories.
Address Utah Bone and Joint Center, 5323 S. Woodrow Street #202, Salt Lake City, UT 84107, USA. jskedros@utahboneandjoint.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:16857886 Approved no
Call Number Serial 1868
Permanent link to this record
 

 
Author Witte, T.H.; Knill, K.; Wilson, A.M.
Title Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) Type Journal Article
Year 2004 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol
Volume 207 Issue Pt 21 Pages (up) 3639-3648
Keywords *Acceleration; Animals; Biomechanics; Forelimb/physiology; *Gait; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Telemetry; Time Factors
Abstract Measurement of peak vertical ground reaction force (GRFz) from multiple limbs simultaneously during high-speed, over-ground locomotion would enhance our understanding of the locomotor mechanics of cursorial animals. Here, we evaluate the accuracy of predicting peak GRFz from duty factor (the proportion of the stride for which the limb is in contact with the ground). Foot-mounted uniaxial accelerometers, combined with UHF FM telemetry, are shown to be practical and accurate for the field measurement of stride timing variables, including duty factor. Direct comparison with the force plate produces a mean error of 2.3 ms and 3.5 ms for the timing of foot on and foot off, respectively, across all gaits. Predictions of peak GRFz from duty factor show mean errors (with positive values indicating an overestimate) of 0.8+/-0.04 N kg(-1) (13%; N=42; mean +/- S.E.M.) at walk, -0.3+/-0.06 N kg(-1) (3%; N=75) at trot, -2.3+/-0.27 N kg(-1) (16%; N=18) for the non-lead limb at canter and +2.1+/-0.7 N kg(-1) (19%; N=9) for the lead limb at canter. The substantial over- and underestimate seen at canter, in the lead and non-lead limbs, respectively, is attributed to the different functions performed by the two limbs in the asymmetrical gaits. The difference in load experienced by the lead and non-lead limbs decreased with increasing speed.
Address Structure and Motion Lab, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0949 ISBN Medium
Area Expedition Conference
Notes PMID:15371472 Approved no
Call Number Equine Behaviour @ team @ Serial 3658
Permanent link to this record