|   | 
Details
   web
Records
Author Reiss, D.; Marino, L.
Title Mirror self-recognition in the bottlenose dolphin: a case of cognitive convergence Type Journal Article
Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 98 Issue 10 Pages 5937-5942
Keywords Animals; *Cognition; Dolphins/*physiology; *Visual Perception
Abstract The ability to recognize oneself in a mirror is an exceedingly rare capacity in the animal kingdom. To date, only humans and great apes have shown convincing evidence of mirror self-recognition. Two dolphins were exposed to reflective surfaces, and both demonstrated responses consistent with the use of the mirror to investigate marked parts of the body. This ability to use a mirror to inspect parts of the body is a striking example of evolutionary convergence with great apes and humans.
Address Osborn Laboratories of Marine Sciences, New York Aquarium, Wildlife Conservation Society, Brooklyn, NY 11224, USA. dlr28@columbia.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11331768 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2822
Permanent link to this record
 

 
Author Hauser, M.D.; Kralik, J.; Botto-Mahan, C.; Garrett, M.; Oser, J.
Title Self-recognition in primates: phylogeny and the salience of species-typical features Type Journal Article
Year 1995 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 92 Issue 23 Pages 10811-10814
Keywords Animals; *Behavior, Animal; *Cognition; Discrimination (Psychology); Exploratory Behavior; Female; Hair Color; Male; Phylogeny; Psychology, Comparative; Research Design; Saguinus/*psychology; *Self Concept; Species Specificity; Touch; *Visual Perception
Abstract Self-recognition has been explored in nonlinguistic organisms by recording whether individuals touch a dye-marked area on visually inaccessible parts of their face while looking in a mirror or inspect parts of their body while using the mirror's reflection. Only chimpanzees, gorillas, orangutans, and humans over the age of approximately 2 years consistently evidence self-directed mirror-guided behavior without experimenter training. To evaluate the inferred phylogenetic gap between hominoids and other animals, a modified dye-mark test was conducted with cotton-top tamarins (Saguinus oedipus), a New World monkey species. The white hair on the tamarins' head was color-dyed, thereby significantly altering a visually distinctive species-typical feature. Only individuals with dyed hair and prior mirror exposure touched their head while looking in the mirror. They looked longer in the mirror than controls, and some individuals used the mirror to observe visually inaccessible body parts. Prior failures to pass the mirror test may have been due to methodological problems, rather than to phylogenetic differences in the capacity for self-recognition. Specifically, an individual's sensitivity to experimentally modified parts of its body may depend crucially on the relative saliency of the modified part (e.g., face versus hair). Moreover, and in contrast to previous claims, we suggest that the mirror test may not be sufficient for assessing the concept of self or mental state attribution in nonlinguistic organisms.
Address Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:7479889 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2825
Permanent link to this record
 

 
Author Rilling, M.E.; Neiworth, J.J.
Title How animals use images Type Journal Article
Year 1991 Publication Science Progress Abbreviated Journal Sci Prog
Volume 75 Issue 298 Pt 3-4 Pages 439-452
Keywords Animals; Association Learning; Columbidae; *Concept Formation; *Imagination; *Mental Recall; Motion Perception; Problem Solving; *Thinking; *Visual Perception
Abstract Animal cognition is a field within experimental psychology in which cognitive processes formerly studied exclusively with people have been demonstrated in animals. Evidence for imagery in the pigeon emerges from the experiments described here. The pigeon's task was to discriminate, by pecking the appropriate choice key, between a clock hand presented on a video screen that rotated clockwise with constant velocity from a clock hand that violated constant velocity. Imagery was defined by trials on which the line rotated from 12.00 o'clock to 3.00 o'clock, then disappeared during a delay, and reappeared at a final stop location beyond 3.00 o'clock. After acquisition of a discrimination with final stop locations at 3.00 o'clock and 6.00 o'clock, the evidence for imagery was the accurate responding of the pigeons to novel locations at 4.00 o'clock and 7.00 o'clock. Pigeons display evidence of imagery by transforming a representation of movement that includes a series of intermediate steps which accurately represent the location of a moving stimulus after it disappears.
Address Department of Psychology, Michigan State University, East Lansing 48824
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8504 ISBN Medium
Area Expedition Conference
Notes PMID:1842858 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2831
Permanent link to this record
 

 
Author Matsushima, T.; Izawa, E.-I.; Aoki, N.; Yanagihara, S.
Title The mind through chick eyes: memory, cognition and anticipation Type Journal Article
Year 2003 Publication Zoological Science Abbreviated Journal Zoolog Sci
Volume 20 Issue 4 Pages 395-408
Keywords Animals; Birds/anatomy & histology/*physiology; Brain/anatomy & histology/cytology/physiology; Cognition/*physiology; Memory/*physiology; Perception/physiology
Abstract To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as “naive curiosity,” “contra-freeloading,” “Concorde fallacy,” and “altruism.”
Address Graduate School of Bioagricultural Sciences, Nagoya University, Japan. matusima@agr.nagoya-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0289-0003 ISBN Medium
Area Expedition Conference
Notes PMID:12719641 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 2858
Permanent link to this record
 

 
Author Timney, B.; Keil, K.
Title Local and global stereopsis in the horse Type Journal Article
Year 1999 Publication Vision Research Abbreviated Journal Vision Res
Volume 39 Issue 10 Pages 1861-1867
Keywords Animals; Depth Perception/*physiology; Female; Horses/*physiology; Pattern Recognition, Visual/physiology; Psychophysics; Sensory Thresholds/physiology; Vision, Binocular/physiology; Vision, Monocular/physiology
Abstract Although horses have laterally-placed eyes, there is substantial binocular overlap, allowing for the possibility that these animals have stereopsis. In the first experiment of the present study we measured local stereopsis by obtaining monocular and binocular depth thresholds for renal depth stimuli. On all measures, the horses' binocular performance was superior to their monocular. When depth thresholds were obtained, binocular thresholds were several times superior to those obtained monocularly, suggesting that the animals could use stereoscopic information when it was available. The binocular thresholds averaged about 15 min arc. In the second experiment we obtained evidence for the presence of global stereopsis by testing the animals' ability to discriminate between random-dot stereograms with and without consistent disparity information. When presented with such stimuli they showed a strong preference for the cyclopean equivalent of the positive stimulus with the real depth. These results provide the first behavioral demonstration of a full range of stereoscopic skills in a lateral-eyed mammal.
Address Department of Psychology, Faculty of Social Science, University of Western Ontario, London, Canada. timney@julian.uwo.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-6989 ISBN Medium
Area Expedition Conference
Notes PMID:10343877 Approved yes
Call Number (up) Equine Behaviour @ team @ Serial 3580
Permanent link to this record
 

 
Author Pepperberg, I.M.; Brezinsky, M.V.
Title Acquisition of a relative class concept by an African gray parrot (Psittacus erithacus): discriminations based on relative size Type Journal Article
Year 1991 Publication Journal of Comparative Psychology Abbreviated Journal J Comp Psychol
Volume 105 Issue 3 Pages 286-294
Keywords Animals; Aptitude; *Concept Formation; *Discrimination Learning; Form Perception; Male; Mental Recall; *Parrots; *Size Perception; Vocalization, Animal
Abstract We report that an African gray parrot (Psittacus erithacus), Alex, responds to stimuli on a relative basis. Previous laboratory studies with artificial stimuli (such as pure tones) suggest that birds make relational responses as a secondary strategy, only after they have acquired information about the absolute values of the stimuli. Alex, however, after learning to respond to a small set of exemplars on the basis of relative size, transferred this behavior to novel situations that did not provide specific information about the absolute values of the stimuli. He responded to vocal questions about which was the larger or smaller exemplar by vocally labeling its color or material, and he responded “none” if the exemplars did not differ in size. His overall accuracy was 78.7%.
Address Northwestern University
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. : 1983 Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:1935007 Approved yes
Call Number (up) Equine Behaviour @ team @ Serial 3610
Permanent link to this record
 

 
Author Ikeda, M.; Patterson, K.; Graham, K.S.; Ralph, M.A.L.; Hodges, J.R.
Title A horse of a different colour: do patients with semantic dementia recognise different versions of the same object as the same? Type Journal Article
Year 2006 Publication Neuropsychologia Abbreviated Journal Neuropsychologia
Volume 44 Issue 4 Pages 566-575
Keywords Adult; Aged; Anomia/diagnosis/psychology; Atrophy; *Attention; Color Perception; Dementia/*diagnosis/psychology; *Discrimination Learning; Dominance, Cerebral; Female; Humans; Male; *Memory, Short-Term; Middle Aged; Neuropsychological Tests; Orientation; *Pattern Recognition, Visual; Reference Values; Retention (Psychology); Semantics; Size Perception; Temporal Lobe/pathology
Abstract Ten patients with semantic dementia resulting from bilateral anterior temporal lobe atrophy, and 10 matched controls, were tested on an object recognition task in which they were invited to choose (from a four-item array) the picture representing “the same thing” as an object picture that they had just inspected and attempted to name. The target in the response array was never physically identical to the studied picture but differed from it – in the various conditions – in size, angle of view, colour or exemplar (e.g. a different breed of dog). In one test block for each patient, the response array was presented immediately after the studied picture was removed; in another block, a 2 min filled delay was inserted between study and test. The patients performed relatively well when the studied object and target response differed only in the size of the picture on the page, but were significantly impaired as a group in the other three type-of-change conditions, even with no delay between study and test. The five patients whose structural brain imaging revealed major right-temporal atrophy were more impaired overall, and also more affected by the 2 min delay, than the five patients with an asymmetric pattern characterised by predominant left-sided atrophy. These results are interpreted in terms of a hypothesis that successful classification of an object token as an object type is not a pre-semantic ability but rather results from interaction of perceptual and conceptual processing.
Address Department of Neuropsychiatry, Ehime University School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan. mikeda@m.ehime-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-3932 ISBN Medium
Area Expedition Conference
Notes PMID:16115656 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4059
Permanent link to this record
 

 
Author Carroll, J.; Murphy, C.J.; Neitz, M.; Hoeve, J.N.; Neitz, J.
Title Photopigment basis for dichromatic color vision in the horse Type Journal Article
Year 2001 Publication Journal of Vision Abbreviated Journal J Vis
Volume 1 Issue 2 Pages 80-87
Keywords Adaptation, Physiological; Animals; Color Perception/*physiology; Cones (Retina)/chemistry/*physiology; Electroretinography; Horses/*physiology; Photic Stimulation; Phototransduction/physiology; Retinal Pigments/analysis/*physiology; Visual Perception/physiology
Abstract Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.
Address Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7362 ISBN Medium
Area Expedition Conference
Notes PMID:12678603 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4060
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Matzke, S.M.; Oubre, J.L.; Caranto, G.R.; Gentry, M.K.; Galbicka, G.
Title Behavioral and immunological effects of exogenous butyrylcholinesterase in rhesus monkeys Type Journal Article
Year 1999 Publication Pharmacology, Biochemistry, and Behavior Abbreviated Journal Pharmacol Biochem Behav
Volume 62 Issue 3 Pages 523-530
Keywords Animals; Antibody Formation/drug effects; Behavior, Animal/*drug effects; Butyrylcholinesterase/*immunology/pharmacokinetics/*pharmacology; Cognition/drug effects; Color Perception/drug effects; Conditioning, Operant/drug effects; Discrimination Learning/drug effects; Half-Life; Horses; Humans; Macaca mulatta; Male
Abstract Although conventional therapies prevent organophosphate (OP) lethality, laboratory animals exposed to such treatments typically display behavioral incapacitation. Pretreatment with purified exogenous human or equine serum butyrylcholinesterase (Eq-BuChE), conversely, has effectively prevented OP lethality in rats and rhesus monkeys, without producing the adverse side effects associated with conventional treatments. In monkeys, however, using a commercial preparation of Eq-BuChE has been reported to incapacitate responding. In the present study, repeated administration of commercially prepared Eq-BuChE had no systematic effect on behavior in rhesus monkeys as measured by a six-item serial probe recognition task, despite 7- to 18-fold increases in baseline BuChE levels in blood. Antibody production induced by the enzyme was slight after the first injection and more pronounced following the second injection. The lack of behavioral effects, the relatively long in vivo half-life, and the previously demonstrated efficacy of BuChE as a biological scavenger for highly toxic OPs make BuChE potentially more effective than current treatment regimens for OP toxicity.
Address Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-3057 ISBN Medium
Area Expedition Conference
Notes PMID:10080246 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4064
Permanent link to this record