|   | 
Details
   web
Records
Author Lingle, S.; Rendall, D.; Wilson, W.F.; DeYoung, R.W.; Pellis, S.M.
Title Altruism and recognition in the antipredator defence of deer: 2. Why mule deer help nonoffspring fawns Type Journal Article
Year 2007 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.
Volume 73 Issue 5 Pages 907-916
Keywords aggressive defence; altruism; behavioural discrimination; cooperation; motivational constraint; mule deer; Odocoileus hemionus; Odocoileus virginianus; recognition error; white-tailed deer
Abstract Both white-tailed deer, Odocoileus virginianus, and mule deer, O. hemionus, females defend fawns against coyotes, Canis latrans, but only mule deer defend nonoffspring conspecific and heterospecific fawns. During a predator attack, females may have to decide whether to defend a fawn while having imperfect information on its identity obtained from hearing a few distress calls. Although imperfect recognition can influence altruistic behaviour, few empirical studies have considered this point when testing functional explanations for altruism. We designed a series of playback experiments with fawn distress calls to test alternative hypotheses (by-product of parental care, kin selection, reciprocal altruism) for the mule deer's defence of nonoffspring, specifically allowing for the possibility that females mistake these fawns for their own. White-tailed deer females approached the speaker only when distress calls of white-tailed deer fawns were played and when their own fawn was hidden, suggesting that fawn defence was strictly a matter of parental care in this species. In contrast, mule deer females responded similarly and strongly, regardless of the caller's identity, the female's reproductive state (mother or nonmother) or the presence of their own offspring. The failure of mule deer females to adjust their responses to these conditions suggests that they do not defend nonoffspring because they mistake them for their own fawns. The lack of behavioural discrimination also suggests that kin selection, reciprocal altruism and defence of the offspring's area are unlikely to explain the mule deer's defence of nonoffspring. We identify causal and functional questions that still need to be addressed to understand why mule deer defend fawns so indiscriminately.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4211
Permanent link to this record
 

 
Author Bates, L.A.; Sayialel, K.N.; Njiraini, N.W.; Poole, J.H.; Moss, C.J.; Byrne, R.W.
Title African elephants have expectations about the locations of out-of-sight family members Type Journal Article
Year 2008 Publication Biology Letters Abbreviated Journal Biol Lett
Volume 4 Issue 1 Pages 34-36
Keywords elephants, olfaction, urine, individual recognition
Abstract Monitoring the location of conspecifics may be important to social mammals. Here, we use an expectancy-violation paradigm to test the ability of African elephants (Loxodonta africana) to keep track of their social companions from olfactory cues. We presented elephants with samples of earth mixed with urine from female conspecifics that were either kin or unrelated to them, and either unexpected or highly predictable at that location. From behavioural measurements of the elephants' reactions, we show that African elephants can recognize up to 17 females and possibly up to 30 family members from cues present in the urine-earth mix, and that they keep track of the location of these individuals in relation to themselves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved yes
Call Number (up) Equine Behaviour @ team @ Serial 4332
Permanent link to this record
 

 
Author Brennan, P.A.; Kendrick, K.M.
Title Mammalian social odours: attraction and individual recognition Type Journal Article
Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.
Volume 361 Issue 1476 Pages 2061-2078
Keywords amygdala, maternal bonding, olfactory bulb, pregnancy block, social recognition, vomeronasal
Abstract Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4334
Permanent link to this record
 

 
Author Penn, D.; Potts, W.K.
Title Untrained mice discriminate MHC-determined odors Type Journal Article
Year 1998 Publication Physiology & Behavior Abbreviated Journal Physiol. Behav.
Volume 64 Issue 3 Pages 235-243
Keywords Major histocompatibility complex; Pheromones; Olfaction; Kin recognition; Sexual selection
Abstract PENN, D. AND W. K. POTTS. Untrained mice distinguish MHC-determined odors. PHYSIOL BEHAV 64(3) 235-243, 1998.--Immune recognition occurs when foreign antigens are presented to T-lymphocytes by molecules encoded by the highly polymorphic genes of the major histocompatibility complex (MHC). House mice (Mus musculus) prefer to mate with individuals that have dissimilar MHC genes. Numerous studies indicate that mice recognize MHC identity through chemosensory cues; however, it is unclear whether odor is determined by classical, antigen-presenting MHC loci or closely linked genes. Previous studies have relied on training laboratory mice and rats to distinguish MHC-associated odors, but there are several reasons why training experiments may be inappropriate assays for testing if MHC genes affect odor. The aim of this study was to determine whether classical MHC genes affect individual odors and whether wild-derived mice can detect MHC-associated odors without training. In the first experiment, we found that wild-derived mice can be trained in a Y-maze to detect the odors of mice that differ genetically only in the MHC region. In the second and third experiments, we used a naturalistic habituation assay and found that wild-derived mice can, without training, distinguish the odors of mice that differ genetically only at one classical MHC locus (dm2 mutants).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4418
Permanent link to this record
 

 
Author Drummond, H.
Title Dominance in vertebrate broods and litters Type Journal Article
Year 2006 Publication Quarterly Review of Biology Abbreviated Journal
Volume 81 Issue 1 Pages 3-32
Keywords Aggression; Assessment; Dominance; Individual recognition; Sibling conflict; Trained losing
Abstract Drawing on the concepts and theory of dominance in adult vertebrates, this article categorizes the relationships of dominance between infant siblings, identifies the behavioral mechanisms that give rise to those relationships, and proposes a model to explain their evolution. Dominance relationships in avian broods can be classified according to the agonistic roles of dominants and subordinates as “aggression-submission,” “aggression-resistance, ” “aggression-aggression,” “aggression-avoidance,” “rotating dominance,” and “flock dominance.” These relationships differ mainly in the submissiveness/pugnacity of subordinates, which is pivotal, and in the specificity/generality of the learning processes that underlie them. As in the dominance hierarchies of adult vertebrates, agonistic roles are engendered and maintained by several mechanisms, including differential fighting ability, assessment, trained winning and losing (especially in altricial species), learned individual relationships (especially in precocial species), site-specific learning, and probably group-level effects. An evolutionary framework in which the species-typical dominance relationship is determined by feeding mode, confinement, cost of subordination, and capacity for individual recognition, can be extended to mammalian litters and account for the aggression-submission and aggression-resistance observed in distinct populations of spotted hyenas and the “site-specific dominance” (teat ownership) of some pigs, felids, and hyraxes. Little is known about agonism in the litters of other mammals or broods of poikilotherms, but some species of fish and crocodilians have the potential for dominance among broodmates. Copyright © 2006 by The University of Chicago. All rights reserved.
Address Instituto de Ecología, Universidad Nacional Autónoma de México, A.P. 70-275, 04510 D.F., Mexico
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 20; Export Date: 23 October 2008; Source: Scopus Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4559
Permanent link to this record
 

 
Author Nakagawa, S.; Waas, J.R.
Title 'O sibling, where art thou?' – A review of avian sibling recognition with respect to the mammalian literature Type Journal Article
Year 2004 Publication Biological Reviews of the Cambridge Philosophical Society Abbreviated Journal
Volume 79 Issue 1 Pages 101-119
Keywords Birds; Direct familiarisation; Indirect familiarisation; Individual recognition; Kin discrimination; Kin recognition; Mammals; Sibling recognition
Abstract Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where 'mixing potential' of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through 'direct familiarisation' (commonly known as associative learning or familiarity); future experiments should also incorporate tests for 'indirect familiarisation' (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic.
Address Department of Biological Sciences, University Waikato, Private Bag 3105, Hamilton, New Zealand
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 9; Export Date: 23 October 2008; Source: Scopus Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4567
Permanent link to this record
 

 
Author Arakawa, H.; Arakawa, K.; Blanchard, D.C.; Blanchard, R.J.
Title A new test paradigm for social recognition evidenced by urinary scent marking behavior in C57BL/6J mice Type Journal Article
Year 2008 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.
Volume 190 Issue 1 Pages 97-104
Keywords Social recognition; Urine marking; Familiarity; Context recognition; C57BL/6J mice
Abstract Olfaction is a major sensory element in intraspecies recognition and communication in mice. The present study investigated scent marking behaviors of males of the highly inbred C57BL/6J (C57) strain in order to evaluate the ability of these behaviors to provide clear and consistent measures of social familiarity and response to social signals. C57 males engage in scent marking when placed in a chamber with a wire mesh partition separating them from a conspecific. Male mice (C57 or outbred CD-1 mice) showed rapid habituation of scent marking (decreased marking over trials) with repeated exposure at 24-h intervals, to a stimulus animal of the C57 or CD-1 strains, or to an empty chamber. Subsequent exposure to a genetically different novel mouse (CD-1 after CD-1 exposure, or CD-1 after C57 exposure) or to a novel context (different shaped chamber) produced recovery of marking, while responses to a novel but genetically identical mouse (C57 after C57 exposure) or to the empty chamber did not. This finding demonstrated that male mice differentiate familiar and novel conspecifics as expressed by habituation and recovery of scent marking, but neither C57 or CD-1 mice can differentiate new vs. familiar C57 males; likely due to similarities in their odor patterns. The data also indicate that scent marking can differentiate novel from familiar contexts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4639
Permanent link to this record
 

 
Author Trillmich, F.; Rehling, A.
Title Animal Communication: Parent-Offspring Type Book Chapter
Year 2006 Publication Encyclopedia of Language & Linguistics Abbreviated Journal
Volume Issue Pages 284-288
Keywords Begging Strategies; Communication; Competition; Feeding Strategies; Fitness; Parental Care; Parent-Offspring Conflict; Recognition; Sibling Conflict
Abstract Parent-offspring communication has evolved under strong selection to guarantee that the valuable resource of parental care is expended efficiently on raising offspring. To ensure allocation of parental care to their own offspring, individual recognition becomes established in higher vertebrates when the young become mobile at a time when a nest site can no longer provide a safe cue to recognition. Such recognition needs to be established by rapid, sometimes imprinting-like, processes in animals producing precocial offspring. In parents, offering strategies that stimulate feeding and entice offspring to approach the right site have evolved. Such parental signals can be olfactory, acoustic, or visual. In offspring, begging strategies involve shuffling for the best place to obtain food – be this the most productive teat or the best position in the nest. This involves signals that make the offspring particularly obvious to the parent. Parents often feed young according to their signaling intensity but may also show favoritism for weaker offspring. Offspring signals also serve to communicate the continuing presence of the young and may thereby maintain brood-care behavior in parents. Internal processes in parents may end parental care irrespective of further signaling by offspring, thus ensuring that offspring cannot manipulate parents into providing substantially more care than is optimal for their own fitness.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Oxford Editor Keith Brown
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9780080448541 Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4642
Permanent link to this record
 

 
Author Holekamp, K.E.; Sakai, S.T.; Lundrigan, B.L.
Title Social intelligence in the spotted hyena (Crocuta crocuta) Type Journal Article
Year 2007 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci
Volume 362 Issue 1480 Pages 523-538
Keywords Anatomy, Comparative; Animals; Brain/*anatomy & histology; Cercopithecinae/anatomy & histology/*physiology; Decision Making/physiology; Hyaenidae/anatomy & histology/*physiology; *Intelligence; *Recognition (Psychology); *Social Behavior; Species Specificity
Abstract If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.
Address Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. holekamp@msu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8436 ISBN Medium
Area Expedition Conference
Notes PMID:17289649 Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4719
Permanent link to this record
 

 
Author Patris, B.; Perrier, G.; Schaal, B.; Coureaud, G.
Title Early development of filial preferences in the rabbit: implications of nursing- and pheromone-induced odour learning? Type Journal Article
Year 2008 Publication Animal Behaviour. Abbreviated Journal Anim. Behav.
Volume 76 Issue 2 Pages 305-314
Keywords learning; mammary pheromone; mother-young relationship; Oryctolagus cuniculus; rabbit; recognition
Abstract Newborn rabbits, Oryctolagus cuniculus, discriminate between different categories of adult conspecifics on the basis of their abdominal odour cues. Whether these cues can support the development of filial preferences has not been adequately tested. Using a two-choice paradigm, we assessed the ability of 3-8-day-old pups to orient selectively to the mother versus an unfamiliar female, either spontaneously or after odour conditioning. In experiment 1, nonconditioned pups roamed indifferently over the mother and an unfamiliar female. In experiment 2, pups conditioned to a neutral odorant while nursing or with the mammary pheromone became attracted by the odorant. In experiment 3, pups that had learned the odorant while nursing oriented for longer to any female carrying it, but the unscented mother and a scented unfamiliar female were equally attractive. Finally, in experiment 4, pups that had learned the odorant paired with the mammary pheromone showed a preference for their scented mother, but not systematically for a scented unfamiliar female; furthermore, they were equally attracted by the unscented mother and a scented unfamiliar female. In sum, pups did not spontaneously evince an olfactory preference for the mother when opposed to an unfamiliar female, although they seemed able to detect individual maternal odours. In fact, they appeared to react to both species-specific cues and individual cues that they had learned, and their responses depended on their degree of familiarity with the cues and on the context. The mammary pheromone by itself might act as both a releasing and a reinforcing signal in these early socially oriented behaviours.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) Equine Behaviour @ team @ Serial 4646
Permanent link to this record