toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tommasi, L. url  doi
openurl 
  Title Mechanisms and functions of brain and behavioural asymmetries Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 855-859  
  Keywords  
  Abstract For almost a century the field of brain and behavioural asymmetries has been dominated by studies on humans, resting on the evidence that the anatomical structures underlying language functions are asymmetrical, and that human handedness is lateralized at the population level. Today, there is not only evidence of population-level lateralization of brain and behaviour across a variety of vertebrate and invertebrate species, but also a growing consensus that the comparative analysis of the environmental and developmental factors that give origin to neural and behavioural laterality in animal models, together with theoretical analyses of their costs and benefits, will be crucial for understanding the evolutionary pathways that led to such a multifaceted phenomenon. The present theme issue provides a survey of theoretical, review and research work cutting across the biological and the cognitive sciences, focusing on various species of fishes, birds and primates (including humans) and emphasizing an integrative approach to the study of lateralization encompassing neural, behavioural, cognitive, developmental and environmental aspects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5340  
Permanent link to this record
 

 
Author Hamilton, C.R.; Vermeire, B.A. url  doi
openurl 
  Title Complementary hemispheric specialization in monkeys Type Journal Article
  Year 1988 Publication Science Abbreviated Journal Science  
  Volume 242 Issue 4886 Pages 1691-1694  
  Keywords  
  Abstract Twenty-five split-brain monkeys were taught to discriminate two types of visual stimuli that engage lateralized cerebral processing in human subjects. Differential lateralization for the two kinds of discriminations was found; the left hemisphere was better at distinguishing between tilted lines and the right hemisphere was better at discriminating faces. These results indicate that lateralization of cognitive processing appeared in primates independently of language or handedness. In addition, cerebral lateralization in monkeys may provide an appropriate model for studying the biological basis of hemispheric specialization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5342  
Permanent link to this record
 

 
Author Ghirlanda, S.; Vallortigara, G. url  doi
openurl 
  Title The evolution of brain lateralization: a game-theoretical analysis of population structure Type Journal Article
  Year 2004 Publication Proceedings of the Royal Society of London. Series B: Biological Sciences Abbreviated Journal  
  Volume 271 Issue 1541 Pages 853-857  
  Keywords  
  Abstract In recent years, it has become apparent that behavioural and brain lateralization at the population level is the rule rather than the exception among vertebrates. The study of these phenomena has so far been the province of neurology and neuropsychology. Here, we show how such research can be integrated with evolutionary biology to understand lateralization more fully. In particular, we address the fact that, within a species, left– and right–type individuals often occur in proportions different from one–half (e.g. hand use in humans). The traditional explanations offered for lateralization of brain function (that it may avoid unnecessary duplication of neural circuitry and reduce interference between functions) cannot account for this fact, because increased individual efficiency is unrelated to the alignment of lateralization at the population level. A further puzzle is that such an alignment may even be disadvantageous, as it makes individual behaviour more predictable to other organisms. Here, we show that alignment of the direction of behavioural asymmetries in a population can arise as an evolutionarily stable strategy when individual asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Brain and behavioural lateralization, as we know it in humans and other vertebrates, may have evolved under basically ‘social’ selection pressures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5345  
Permanent link to this record
 

 
Author Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. url  doi
openurl 
  Title Intraspecific competition and coordination in the evolution of lateralization Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 861-866  
  Keywords  
  Abstract Recent studies have revealed a variety of left–right asymmetries among vertebrates and invertebrates. In many species, left- and right-lateralized individuals coexist, but in unequal numbers (‘population-level’ lateralization). It has been argued that brain lateralization increases individual efficiency (e.g. avoiding unnecessary duplication of neural circuitry and reducing interference between functions), thus counteracting the ecological disadvantages of lateral biases in behaviour (making individual behaviour more predictable to other organisms). However, individual efficiency does not require a definite proportion of left- and right-lateralized individuals. Thus, such arguments do not explain population-level lateralization. We have previously shown that, in the context of prey–predator interactions, population-level lateralization can arise as an evolutionarily stable strategy when individually asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Here, we extend our model showing that populations consisting of left- and right-lateralized individuals in unequal numbers can be evolutionarily stable, based solely on strategic factors arising from the balance between antagonistic (competitive) and synergistic (cooperative) interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5346  
Permanent link to this record
 

 
Author da Costa, A.P.; Leigh, A.E.; Man, M.-S.; Kendrick, K.M. url  doi
openurl 
  Title Face pictures reduce behavioural, autonomic, endocrine and neural indices of stress and fear in sheep Type Journal Article
  Year 2004 Publication Proceedings of the Royal Society of London. Series B: Biological Sciences Abbreviated Journal Proc. R. Soc. Lond. B.  
  Volume 271 Issue 1552 Pages 2077-2084  
  Keywords  
  Abstract Faces are highly emotive stimuli and we find smiling or familiar faces both attractive and comforting, even as young babies. Do other species with sophisticated face recognition skills, such as sheep, also respond to the emotional significance of familiar faces? We report that when sheep experience social isolation, the sight of familiar sheep face pictures compared with those of goats or inverted triangles significantly reduces behavioural (activity and protest vocalizations), autonomic (heart rate) and endocrine (cortisol and adrenaline) indices of stress. They also increase mRNA expression of activity–dependent genes (c–fos and zif/268) in brain regions specialized for processing faces (temporal and medial frontal cortices and basolateral amygdala) and for emotional control (orbitofrontal and cingulate cortex), and reduce their expression in regions associated with stress responses (hypothalamic paraventricular nucleus) and fear (central and lateral amygdala). Effects on face recognition, emotional control and fear centres are restricted to the right brain hemisphere. Results provide evidence that face pictures may be useful for relieving stress caused by unavoidable social isolation in sheep, and possibly other animal species, including humans. The finding that sheep, like humans, appear to have a right brain hemisphere involvement in the control of negative emotional experiences also suggests that functional lateralization of brain emotion systems may be a general feature in mammals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5354  
Permanent link to this record
 

 
Author Perez-Cruz, C.; Simon, M.; Czéh, B.; Flügge, G.; Fuchs, E. url  doi
openurl 
  Title Hemispheric differences in basilar dendrites and spines of pyramidal neurons in the rat prelimbic cortex: activity- and stress-induced changes Type Journal Article
  Year 2009 Publication European Journal of Neuroscience Abbreviated Journal Eur. J. Neurosci.  
  Volume 29 Issue 4 Pages 738-747  
  Keywords dendrite; diurnal rhythm; lateralization; prefrontal cortex; spine  
  Abstract Abstract Pyramidal neurons of the rat medial prefrontal cortex have been shown to react to chronic stress by retracting their apical dendrites and by spine loss. We extended these findings by focusing on the basilar dendritic tree of layer III pyramidal neurons in both hemispheres of the rat prelimbic cortex. Animals were subjected to daily restraint stress for 1 week (6 h/day), during either the resting or the activity period. The morphology of basilar dendrites and spines of Golgi–Cox-stained neurons in the left and right hemispheres was digitally reconstructed and analyzed. We observed the following: (i) there was an inherent hemispheric asymmetry in control rats during the resting period: the number of spines on proximal dendrites was higher in the left than in the right hemisphere; (ii) basal dendrites in controls displayed a diurnal variation: there was more dendritic material during the resting period than in the activity period; (iii) chronic stress reduced the length of basal dendrites in only the right prelimbic cortex; (iv) chronic stress reduced spine density on proximal basal dendrites; (v) restraint stress during the activity period had more pronounced effects on the physiological stress parameters than restraint stress during the resting period. Our results show dynamic hemisphere-dependent structural changes in pyramidal neurons of the rat prelimbic cortex that are tightly linked to periods of resting and activity. These morphological alterations reflect the capacity of the neurons to react to external stimuli and mirror presumptive changes in neuronal communication.  
  Address  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-9568 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5355  
Permanent link to this record
 

 
Author Andrew, R.J.; Osorio, D.; Budaev, S. url  doi
openurl 
  Title Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 983-989  
  Keywords  
  Abstract Some aspects of lateralization are widespread. This is clear for the association between left-eye (LE) use and readiness to respond intensely to releasing stimuli presented by others, which has been found in representatives of all major groups of tetrapods and in fishes. In the chick, this behavioural asymmetry is linked developmentally to greater ability to sustain response against distracting stimuli with right-eye (RE) use, in that both reverse with the reversal of the normal RE exposure to light. In the zebrafish, the same two asymmetries (normally) have similar associations with the LE and the RE, and both also reverse together (owing to epithalamic reversal). Here, we show that light exposure early in development is needed in zebrafish to generate both asymmetries. Dark development largely abolishes both the enhanced abilities, confirming their linkage. Resemblance to the chick is increased by the survival in the chick, after dark development, of higher ability to assess familiarity of complex stimuli when using the LE. A somewhat similar ability survives in dark-developed zebrafish. Here, LE use causes lesser reliance on a single recent experience than on longer term past experience in the assessment of novelty. Such resemblances between a fish and a bird suggest that we should look not only for resemblances between different groups of vertebrates in the most common overall pattern of lateralization, but also for possible resemblances in the nature of inter-individual variation and in the way in which it is generated during development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5370  
Permanent link to this record
 

 
Author Daisley, J.N.; Mascalzoni, E.; Rosa-Salva, O.; Rugani, R.; Regolin, L. url  doi
openurl 
  Title Lateralization of social cognition in the domestic chicken (Gallus gallus) Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 965-981  
  Keywords  
  Abstract In this paper, we report on the ongoing work in our laboratories on the effect of lateralization produced by light exposure in the egg on social cognition in the domestic chick (Gallus gallus). The domestic chick possesses a lateralized visual system. This has effects on the chick's perception towards and interaction with its environment. This includes its ability to live successfully within a social group. We show that there is a tendency for right brain hemisphere dominance when performing social cognitive actions. As such, chicks show a left hemispatial bias for approaching a signalled target object, tend to perceive gaze and faces of human-like masks more effectively when using their left eye, are able to inhibit a pecking response more effectively when viewing a neighbour tasting a bitter substance with their left eye, and are better able to perform a transitive inference task when exposed to light in the egg and when forced to use their left eye only compared to dark-hatched or right eye chicks. Some of these effects were sex specific, with male chicks tending to show an increased effect of lateralization on their behaviours. These data are discussed in terms of overall social cognition in group living.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5371  
Permanent link to this record
 

 
Author Mazurek, M.; McGee, M.; Minchin, W.; Crowe, M.A.; Earley, B. url  doi
openurl 
  Title Is the avoidance distance test for the assessment of animals' responsiveness to humans influenced by either the dominant or flightiest animal in the group? Type Journal Article
  Year 2011 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 132 Issue 3-4 Pages 107-113  
  Keywords Cattle; Avoidance distance; Human-animal relationship (HAR); Dominance  
  Abstract A previously described (Windschnurer et al., 2009) avoidance distance test was used to assess animals’ fear of humans in order to quantify the human–animal relationship (HAR). This study investigated the influence of the dominant and flightiest animals within a group on the responsiveness of animals during the avoidance distance test. Eighty-eight pregnant heifers comprised of four different genotypes were used (22 animals per genotype): Limousin × Holstein-Friesian, Limousin × Simmental, Charolais × Limousin, and Charolais × Simmental. Sixty of the 88 heifers were group housed (n = 5) into 12 pens with 3 pens per breed, while 28 heifers were singly housed (seven heifers per breed). A reactivity test was performed on days 10, 18, 25 and 30 post-housing on the singly housed heifers, and then on the group housed heifers, on the same days, to calculate a reactivity score. On days 33 and 37 flight and dominance tests, respectively, were performed to identify the flightiest and the dominant animal within each group. On day 41, an avoidance test, measuring both the avoidance distance towards a familiar and an unfamiliar human, was performed on all heifers. No difference (P > 0.05) in reactivity scores was found between the genotypes, between pens for the group housed heifers or between singly housed and group housed heifers (P = 0.28). The avoidance distance (AD) of singly (S) housed heifers towards a familiar (F) (ADSF) human was shorter (P < 0.001) than the avoidance distance of group (G) housed heifers towards an unfamiliar human (ADSU). The ADSF and ADGF were correlated with the ADSU and ADGU (R = 0.87 for singly housed heifers; R = 0.61 for group housed heifers, P < 0.001). For the singly housed heifers, no correlation was observed between reactivity score and ADSF (R = 0.36, P = 0.18), whereas the reactivity score and ADSU were correlated (R = 0.68, P = 0.004). For the group housed heifers no significant correlation was detected between the reactivity score and ADGF (R = 0.18, P = 0.22) or ADGU (R = &#8722;0.11, P = 0.39). No influence of the most dominant animal and the flightiest animals was found on the behaviour of the group in term of avoidance distance and reactivity (P > 0.05). It is concluded that the assessment of the fear of the animals towards humans using the avoidance test at the feed bunk may be useful for singly and group housed heifers and that the leaders of a group such as the flightiest animal or the dominant animal did not influence the avoidance distance test.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1591 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5376  
Permanent link to this record
 

 
Author Magat, M.; Brown, C. url  doi
openurl 
  Title Laterality enhances cognition in Australian parrots Type Journal Article
  Year 2009 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. Roy. Soc. Lond. B Biol. Sci.  
  Volume 276 Issue 1676 Pages 4155-4162  
  Keywords  
  Abstract Cerebral lateralization refers to the division of information processing in either hemisphere of the brain and is a ubiquitous trait among vertebrates and invertebrates. Given its widespread occurrence, it is likely that cerebral lateralization confers a fitness advantage. It has been hypothesized that this advantage takes the form of enhanced cognitive function, potentially via a dual processing mechanism whereby each hemisphere can be used to process specific types of information without contralateral interference. Here, we examined the influence of lateralization on problem solving by Australian parrots. The first task, a pebble-seed discrimination test, was designed for small parrot species that feed predominately on small seeds, which do not require any significant manipulation with the foot prior to ingestion. The second task, a string-pull problem, was designed for larger bodied species that regularly use their feet to manipulate food objects. In both cases, strongly lateralized individuals (those showing significant foot and eye biases) outperformed less strongly lateralized individuals, and this relationship was substantially stronger in the more demanding task. These results suggest that cerebral lateralization is a ubiquitous trait among Australian parrots and conveys a significant foraging advantage. Our results provide strong support for the enhanced cognitive function hypothesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Equine Behaviour @ team @ Serial 5380  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print