toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Brodbeck, D.R. openurl 
  Title Picture fragment completion: priming in the pigeon Type Journal Article
  Year 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 23 Issue 4 Pages 461-468  
  Keywords Animals; *Attention; *Awareness; Columbidae; *Mental Recall; *Pattern Recognition, Visual; *Perceptual Masking; Problem Solving  
  Abstract It has been suggested that the system behind implicit memory in humans is evolutionarily old and that animals should readily show priming. In Experiment 1, a picture fragment completion test was used to test priming in pigeons. After pecking a warning stimulus, pigeons were shown 2 partially obscured pictures from different categories and were always reinforced for choosing a picture from one of the categories. On control trials, the warning stimulus was a picture of some object (not from the S+ or S- category), on study trials the warning stimulus was a picture to be categorized on the next trial, and on test trials the warning stimulus was a randomly chosen picture and the S+ picture was the warning stimulus seen on the previous trial. Categorization was better on study and test trials than on control trials. Experiment 2 ruled out the possibility that the priming effect was caused by the pigeons' responding to familiarity by using warning stimuli from both S+ and S- categories. Experiment 3 investigated the time course of the priming effect.  
  Address Department of Psychology, University of Western Ontario, London, Ontario, Canada. brodbeck@thunderbird.auc.laurentian.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9411019 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2777  
Permanent link to this record
 

 
Author (down) Brennan, P.A.; Kendrick, K.M. doi  openurl
  Title Mammalian social odours: attraction and individual recognition Type Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1476 Pages 2061-2078  
  Keywords amygdala, maternal bonding, olfactory bulb, pregnancy block, social recognition, vomeronasal  
  Abstract Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4334  
Permanent link to this record
 

 
Author (down) Brennan, P.A. doi  openurl
  Title The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
  Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 46 Issue 3 Pages 231-240  
  Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology  
  Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  
  Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15325224 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4191  
Permanent link to this record
 

 
Author (down) Brannon, E.M.; Cantlon, J.F.; Terrace, H.S. doi  openurl
  Title The role of reference points in ordinal numerical comparisons by rhesus macaques (Macaca mulatta) Type Journal Article
  Year 2006 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 2 Pages 120-134  
  Keywords Animals; *Cognition; *Discrimination (Psychology); *Generalization (Psychology); Macaca mulatta/*psychology; Male; Mathematics; *Pattern Recognition, Visual  
  Abstract Two experiments examined ordinal numerical knowledge in rhesus macaques (Macaca mulatta). Experiment 1 replicated the finding (E. M. Brannon & H. S. Terrace, 2000) that monkeys trained to respond in descending numerical order (4-->3-->2-->1) did not generalize the descending rule to the novel values 5-9 in contrast to monkeys trained to respond in ascending order. Experiment 2 examined whether the failure to generalize a descending rule was due to the direction of the training sequence or to the specific values used in the training sequence. Results implicated 3 factors that characterize a monkey's numerical comparison process: Weber's law, knowledge of ordinal direction, and a comparison of each value in a test pair with the reference point established by the first value of the training sequence.  
  Address Center for Cognitive Neuroscience and Department of Psychological and Brain Sciences, Duke University, Durham, NC 27708, USA. brannon@duke.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16634655 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2761  
Permanent link to this record
 

 
Author (down) Bovet, D.; Vauclair, J.; Blaye, A. doi  openurl
  Title Categorization and abstraction abilities in 3-year-old children: a comparison with monkey data Type Journal Article
  Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 8 Issue 1 Pages 53-59  
  Keywords Animals; Child Development; Child, Preschool; *Classification; *Concept Formation; *Discrimination Learning; Female; *Form Perception; Humans; Male; Papio; Pattern Recognition, Visual; *Problem Solving; Species Specificity  
  Abstract Three-year-old children were tested on three categorization tasks of increasing levels of abstraction (used with adult baboons in an earlier study): the first was a conceptual categorization task (food vs toys), the second a perceptual matching task (same vs different objects), and the third a relational matching task in which the children had to sort pairs according to whether or not the two items belonged to the same or different categories. The children were tested using two different procedures, the first a replication of the procedure used with the baboons (pulling one rope for a category or a relationship between two objects, and another rope for the other category or relationship), the second a task based upon children's prior experiences with sorting objects (putting in the same box objects belonging to the same category or a pair of objects exemplifying the same relation). The children were able to solve the first task (conceptual categorization) when tested with the sorting into boxes procedure, and the second task (perceptual matching) when tested with both procedures. The children were able to master the third task (relational matching) only when the rules were clearly explained to them, but not when they could only watch sorting examples. In fact, the relational matching task without explanation requires analogy abilities that do not seem to be fully developed at 3 years of age. The discrepancies in performances between children tested with the two procedures, with the task explained or not, and the discrepancies observed between children and baboons are discussed in relation to differences between species and/or problem-solving strategies.  
  Address Center for Research in Psychology of Cognition, Language and Emotion, Universite de Provence, Aix-en-Provence, France. dbovet@u-paris10.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15300466 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2516  
Permanent link to this record
 

 
Author (down) Beran, M.J.; Smith, J.D.; Redford, J.S.; Washburn, D.A. doi  openurl
  Title Rhesus macaques (Macaca mulatta) monitor uncertainty during numerosity judgments Type Journal Article
  Year 2006 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 2 Pages 111-119  
  Keywords Animals; *Cognition; *Judgment; Macaca mulatta/*psychology; Male; Mathematics; *Pattern Recognition, Visual; *Uncertainty  
  Abstract Two rhesus macaques (Macaca mulatta) judged arrays of dots on a computer screen as having more or fewer dots than a center value that was never presented in trials. After learning a center value, monkeys were given an uncertainty response that let them decline to make the numerosity judgment on that trial. Across center values (3-7), errors occurred most often for sets adjacent in numerosity to the center value. The monkeys also used the uncertainty response most frequently on these difficult trials. A 2nd experiment showed that monkeys' responses reflected numerical magnitude and not the surface-area illumination of the displays. This research shows that monkeys' uncertainty-monitoring capacity extends to the domain of numerical cognition. It also shows monkeys' use of the purest uncertainty response possible, uncontaminated by any secondary motivator.  
  Address Language Research Center, Georgia State University, Atlanta, 30302, USA. mjberan@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16634654 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2762  
Permanent link to this record
 

 
Author (down) Beran, M.J. doi  openurl
  Title Rhesus monkeys (Macaca mulatta) succeed on a computerized test designed to assess conservation of discrete quantity Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 37-45  
  Keywords Animals; *Cognition; *Judgment; Macaca mulatta/*psychology; Male; Mathematics; *Pattern Recognition, Visual; Uncertainty  
  Abstract Conservation of quantity occurs through recognition that changes in the physical arrangement of a set of items do not change the quantity of items in that set. Rhesus monkeys (Macaca mulatta) were presented with a computerized quantity judgment task. Monkeys were rewarded for selecting the greater quantity of items in one of two horizontal arrays of items on the screen. On some trials, after a correct selection, no reward was given but one of the arrays was manipulated. In some cases, this manipulation involved moving items closer together or farther apart to change the physical arrangement of the array without changing the quantity of items in the array. In other cases, additional items were added to the initially smaller array so that it became quantitatively larger. Monkeys then made another selection from the two rows of items. Monkeys were sensitive to these manipulations, changing their selections when the number of items in the rows changed but not when the arrangement only was changed. Therefore, monkeys responded on the basis of the quantity of items, and they were not distracted by non-quantitative manipulations of the sets.  
  Address Language Research Center, Georgia State University, 3401 Panthersville Road, Decatur, GA 30034, USA. mjberan@yahoo.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16868737 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2455  
Permanent link to this record
 

 
Author (down) Benard, J.; Stach, S.; Giurfa, M. doi  openurl
  Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 257-270  
  Keywords Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology  
  Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.  
  Address Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909238 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2446  
Permanent link to this record
 

 
Author (down) Bates, L.A.; Sayialel, K.N.; Njiraini, N.W.; Poole, J.H.; Moss, C.J.; Byrne, R.W. doi  openurl
  Title African elephants have expectations about the locations of out-of-sight family members Type Journal Article
  Year 2008 Publication Biology Letters Abbreviated Journal Biol Lett  
  Volume 4 Issue 1 Pages 34-36  
  Keywords elephants, olfaction, urine, individual recognition  
  Abstract Monitoring the location of conspecifics may be important to social mammals. Here, we use an expectancy-violation paradigm to test the ability of African elephants (Loxodonta africana) to keep track of their social companions from olfactory cues. We presented elephants with samples of earth mixed with urine from female conspecifics that were either kin or unrelated to them, and either unexpected or highly predictable at that location. From behavioural measurements of the elephants' reactions, we show that African elephants can recognize up to 17 females and possibly up to 30 family members from cues present in the urine-earth mix, and that they keep track of the location of these individuals in relation to themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Equine Behaviour @ team @ Serial 4332  
Permanent link to this record
 

 
Author (down) Aust, U.; Huber, L. doi  openurl
  Title Picture-object recognition in pigeons: evidence of representational insight in a visual categorization task using a complementary information procedure Type Journal Article
  Year 2006 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 2 Pages 190-195  
  Keywords Animals; Classification; *Cognition; Columbidae; *Discrimination Learning; *Form Perception; *Generalization (Psychology); Humans; Perceptual Closure; Photic Stimulation; Photography; *Recognition (Psychology)  
  Abstract Success in tasks requiring categorization of pictorial stimuli does not prove that a subject understands what the pictures stand for. The ability to achieve representational insight is by no means a trivial one because it exceeds mere detection of 2-D features present in both the pictorial images and their referents. So far, evidence for such an ability in nonhuman species is weak and inconclusive. Here, the authors report evidence of representational insight in pigeons. After being trained on pictures of incomplete human figures, the birds responded significantly more to pictures of the previously missing parts than to nonrepresentative stimuli, which demonstrates that they actually recognized the pictures' representational content.  
  Address Department for Behavior, Neurobiology and Cognition, University of Vienna, Austria. ulrike.aust@univie.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16634663 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2759  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print