|   | 
Details
   web
Records
Author (down) James, R.; Bennett, P.G.; Krause, J.
Title Geometry for mutualistic and selfish herds: the limited domain of danger Type Journal Article
Year 2004 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 228 Issue 1 Pages 107-113
Keywords Aggregation; Selfish herd; Limited domains
Abstract We present a two-dimensional individual-based model of aggregation behaviour in animals by introducing the concept of a “limited domain of danger”, which represents either a limited detection range or a limited attack range of predators. The limited domain of danger provides a suitable framework for the analysis of individual movement rules under real-life conditions because it takes into account the predator's prey detection and capture abilities. For the first time, a single geometrical construct can be used to analyse the predation risk of both peripheral and central individuals in a group. Furthermore, our model provides a conceptual framework that can be equally applied to aggregation behaviour and refuge use and thus presents a conceptual advance on current theory that treats these antipredator behaviours separately. An analysis of individual movement rules using limited domains of danger showed that the time minimization strategy outcompetes the nearest neighbour strategy proposed by Hamilton's (J. Theor. Biol. 31 (1971) 295) selfish herd model, whereas a random strategy confers no benefit and can even be disadvantageous. The superior performance of the time minimization strategy highlights the importance of taking biological constraints, such as an animal's orientation relative to its neighbours, into account when searching for efficient movement rules underlying the aggregation process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 552
Permanent link to this record
 

 
Author (down) Hemelrijk C K
Title A matrix partial correlation test used in investigations of reciprocity and other social interaction patterns at group level Type Journal Article
Year 1990 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.
Volume 143 Issue 3 Pages 405-420
Keywords
Abstract Reciprocity and other social interaction patterns can be studied at two levels, within pairs (i.e. dyadic level) and among pairs (i.e. at group level). In this paper advantages of the latter approach are emphasized. However, an analysis at group level implies the correlation of interaction matrices and because such data are statistically dependent, the significance of a correlation has to be calculated in a special way
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5050
Permanent link to this record
 

 
Author (down) Hamilton, W.D.
Title Geometry for the selfish herd Type Journal Article
Year 1971 Publication Journal of theoretical biology Abbreviated Journal J. Theor. Biol.
Volume 31 Issue 2 Pages 295-311
Keywords Animals; Anura; *Behavior, Animal; Breeding; Communication; Evolution; Fear; Metallurgy; *Models, Biological; Probability; Snakes; *Spatial Behavior
Abstract This paper presents an antithesis to the view that gregarious behaviour is evolved through benefits to the population or species. Following Galton (1871) and Williams (1964) gregarious behaviour is considered as a form of cover-seeking in which each animal tries to reduce its chance of being caught by a predator.

It is easy to see how pruning of marginal individuals can maintain centripetal instincts in already gregarious species; some evidence that marginal pruning actually occurs is summarized. Besides this, simply defined models are used to show that even in non-gregarious species selection is likely to favour individuals who stay close to others.

Although not universal or unipotent, cover-seeking is a widespread and important element in animal aggregation, as the literature shows. Neglect of the idea has probably followed from a general disbelief that evolution can be dysgenic for a species. Nevertheless, selection theory provides no support for such disbelief in the case of species with outbreeding or unsubdivided populations.

The model for two dimensions involves a complex problem in geometrical probability which has relevance also in metallurgy and communication science. Some empirical data on this, gathered from random number plots, is presented as of possible heuristic value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5193 ISBN Medium
Area Expedition Conference
Notes PMID:5104951 Approved no
Call Number refbase @ user @ Serial 771
Permanent link to this record
 

 
Author (down) Hamilton, W.D.
Title The genetical evolution of social behaviour. I Type Journal Article
Year 1964 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 7 Issue 1and 2 Pages 1-52
Keywords *Behavior; *Genetics; Humans; *Models, Theoretical
Abstract A genetical mathematical model is described which allows for interactions between relatives on one another's fitness. Making use of Wright's Coefficient of Relationship as the measure of the proportion of replica genes in a relative, a quantity is found which incorporates the maximizing property of Darwinian fitness. This quantity is named “inclusive fitness”. Species following the model should tend to evolve behaviour such that each organism appears to be attempting to maximize its inclusive fitness. This implies a limited restraint on selfish competitive behaviour and possibility of limited self-sacrifices.

Special cases of the model are used to show (a) that selection in the social situations newly covered tends to be slower than classical selection, (b) how in populations of rather non-dispersive organisms the model may apply to genes affecting dispersion, and (c) how it may apply approximately to competition between relatives, for example, within sibships. Some artificialities of the model are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5193 ISBN Medium
Area Expedition Conference
Notes PMID:5875341 Approved no
Call Number Equine Behaviour @ team @ Serial 5160
Permanent link to this record
 

 
Author (down) Gueron, S.; Levin, S.A.; Rubenstein, D.I.
Title The Dynamics of Herds: From Individuals to Aggregations Type Journal Article
Year 1996 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 182 Issue 1 Pages 85-98
Keywords
Abstract The dynamic behavior of small herds is investigated by means of simulations of two-dimensional discrete-stochastic models. An individual-based approach is used to relate collective behavior to individual decisions. In our model, the motion of an individual in a herd is assumed to be the combined result of both density-independent and density-dependent decisions, in the latter case based on the influence of surrounding neighbors; assumed decision rules are hierarchical, balancing short range repulsion against long-range attraction. The probability of fragmentation of the model herd depends on parameter values. We explore the variety and characteristics of spatial patterns that develop during migration, for herds that are homogeneous and heterogeneous regarding intrinsic walking speeds. Group integrity can be maintained even in mixed populations, but fragmentation results for these more easily than for a homogeneous herd. Observations of natural populations suggest that animals move away from individuals that intrude too closely into their environment, but are attracted to individuals at a distance. Between these extremes, there appears to be a neutral zone, within which other individuals engender no response. We explore the importance of this neutral zone, and offer evolutionary interpretations. In particular, the neutral zone, if not too large, permits the individual to remain in contact with the herd, while reducing the frequency with which acceleration or deceleration must be undertaken. This offers obvious energetic benefits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5193 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5253
Permanent link to this record
 

 
Author (down) Fishman, M.A.
Title Predator Inspection: Closer Approach as a Way to Improve Assessment of Potential Threats Type Journal Article
Year 1999 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 196 Issue 2 Pages 225-235
Keywords
Abstract When detecting a predator, some prey animals respond in a counterintuitive fashion by approaching, rather than fleeing, that potential threat of extinction. This seemingly paradoxical behaviour, known aspredator inspection, has been reported for a wide variety of taxa--and therefore can be assumed to be adaptive. However, the view of predator inspection as a paradoxical behaviour rests on two implicit assumptions: (a) initial predator detecting is unambiguous, with no uncertainty in discriminating between hunting and non hunting members of predator species, or members of predator species and unrelated phenomena; (b) the costs of flight are negligible relative to the risk of predation. Upon reflection assumption (a) is not really tenable. Whereas assumption (b) is not consistent with experimental evidence [Godin & Crossman (1994)Behav. Ecol. Sociobiol.34,359-366]. Given that predator detection is ambiguous and the costs of flight are not negligible, a prey individual may benefit by a closer approach to the source of the alarming signals, thus improving its assessment of the situation--despite the increased risk of predation. In this paper, the above statement is given rigor by reformulating the problem in game theoretical terms. The results indicate that a prey will minimize its costs by performing predator inspection whenever its degree of certainty regarding predator identification and/or assessment of its intentions is less than a threshold, which is determined by the model's parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 523
Permanent link to this record
 

 
Author (down) Dugatkin, L.A.; Perlin, M.; Atlas, R.
Title The Evolution of Group-beneficial Traits in the Absence of Between-group Selection Type Journal Article
Year 2003 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 220 Issue 1 Pages 67-74
Keywords
Abstract One specific prediction emerging from trait-group models of natural selection is that when individuals possess traits that benefit other group members, natural selection will favor “cheating” (i.e. not possessing the group-beneficial trait) within groups. Cheating is selected within groups because it allows individuals to avoid bearing the relative costs typically associated with group-beneficial traits, but to still reap the benefits associated with the acts of other group members. Selection between groups favors traits that benefit other group members. The relative strength of within- and between-group selection then determines the equilibrium frequency of those who produce group-beneficial traits and those that do not. Here we demonstrate that individual-level selection, that is selection within groups can also produce an intermediate frequency of such group-beneficial traits by frequency-dependent selection. The models we develop are general in nature, but were inspired by the evolution of antibiotic resistance in bacteria. The theory developed here is distinct from prior work that relies on reciprocity or kinship per'se to achieve cooperation and altruism among group members.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 491
Permanent link to this record
 

 
Author (down) Dugatkin, L.A.; Hoglund, J.
Title Delayed breeding and the evolution of mate copying in lekking species Type Journal Article
Year 1995 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 174 Issue 3 Pages 261-267
Keywords
Abstract Recent experimental evidence indicates that females may copy the mate choice of others. Here, we present a model for the evolution of mate copying strategies in lekking species. In the model, all females (copiers and non-copiers) assess male quality, but a copier's assessment of a male's quality increases after males have mated with other females. The model demonstrates that mate copying is favored when breeding late in the season has a relatively high cost. We hope that our results will spur empirical work quantifying the time constraints associated with breeding, thus allowing more direct tests of the model's predictions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 482
Permanent link to this record
 

 
Author (down) Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R.
Title Collective Memory and Spatial Sorting in Animal Groups Type Journal Article
Year 2002 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 218 Issue 1 Pages 1-11
Keywords
Abstract We present a self-organizing model of group formation in three-dimensional space, and use it to investigate the spatial dynamics of animal groups such as fish schools and bird flocks. We reveal the existence of major group-level behavioural transitions related to minor changes in individual-level interactions. Further, we present the first evidence for collective memory in such animal groups (where the previous history of group structure influences the collective behaviour exhibited as individual interactions change) during the transition of a group from one type of collective behaviour to another. The model is then used to show how differences among individuals influence group structure, and how individuals employing simple, local rules of thumb, can accurately change their spatial position within a group (e.g. to move to the centre, the front, or the periphery) in the absence of information on their current position within the group as a whole. These results are considered in the context of the evolution and ecological importance of animal groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-5193 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5310
Permanent link to this record
 

 
Author (down) Broom, M.; Cannings, C.
Title Modelling Dominance Hierarchy formation as a Multi-player game Type Journal Article
Year 2002 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 219 Issue 3 Pages 397-413
Keywords
Abstract Animals who live in groups need to divide available resources amongst themselves. This is often achieved by means of a dominance hierarchy, where dominant individuals obtain a larger share of the resources than subordinate individuals. This paper introduces a model of dominance hierarchy formation using a multi-player extension of the classical Hawk-Dove game. Animals play non-independent pairwise games in a Swiss tournament which pairs opponents against those which have performed equally well in the conflict so far, for a fixed number of rounds. Resources are divided according to the number of contests won. The model, and its emergent properties, are discussed in the context of experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 450
Permanent link to this record