toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Heffner, R.S.; Heffner, H.E. url  openurl
  Title Localization of tones by horses: use of binaural cues and the role of the superior olivary complex Type Journal Article
  Year 1986 Publication Behavioral Neuroscience Abbreviated Journal Behav Neurosci  
  Volume 100 Issue 1 Pages 93-103  
  Keywords Animals; Auditory Pathways/physiology; Auditory Perception/*physiology; Avoidance Learning/physiology; Brain Mapping; Electroshock; Female; Horses/*physiology; Male; Olivary Nucleus/anatomy & histology/*physiology; Orientation/physiology; Pitch Perception/physiology; Sound Localization/*physiology  
  Abstract The ability of horses to use binaural time and intensity difference cues to localize sound was assessed in free-field localization tests by using pure tones. The animals were required to discriminate the locus of a single tone pip ranging in frequency from 250 Hz to 25 kHz emitted by loudspeakers located 30 degrees to the left and right of the animals' midline (60 degrees total separation). Three animals were tested with a two-choice procedure; 2 additional animals were tested with a conditioned avoidance procedure. All 5 animals were able to localize 250 Hz, 500 Hz, and 1 kHz but were completely unable to localize 2 kHz and above. Because the frequency of ambiguity for the binaural phase cue delta phi for horses in this test was calculated to be 1.5 kHz, these results indicate that horses can use binaural time differences in the form of delta phi but are unable to use binaural intensity differences. This finding was supported by an unconditioned orientation test involving 4 additional horses, which showed that horses correctly orient to a 500-Hz tone pip but not to an 8-kHz tone pip. Analysis of the superior olivary complex, the brain stem nucleus at which binaural interactions first take place, reveals that the lateral superior olive (LSO) is relatively small in the horse and lacks the laminar arrangement of bipolar cells characteristic of the LSO of most mammals that can use binaural delta I.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3954885 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5634  
Permanent link to this record
 

 
Author (down) Hartmann, E.; Christensen, J.W.; McGreevy, P.D. url  doi
openurl 
  Title Dominance and Leadership: Useful Concepts in Human-Horse Interactions? Type Journal Article
  Year 2017 Publication Journal of Equine Veterinary Science Abbreviated Journal Proceedings of the 2017 Equine Science Symposium  
  Volume 52 Issue Pages 1-9  
  Keywords Horse; Social order; Dominance hierarchy; Aggression; Injury; Learning; Training  
  Abstract Dominance hierarchies in horses primarily influence priority access to limited resources of any kind, resulting in predictable contest outcomes that potentially minimize aggressive encounters and associated risk of injury. Levels of aggression in group-kept horses under domestic conditions have been reported to be higher than in their feral counterparts but can often be attributed to suboptimal management. Horse owners often express concerns about the risk of injuries occurring in group-kept horses, but these concerns have not been substantiated by empirical investigations. What has not yet been sufficiently addressed are human safety aspects related to approaching and handling group-kept horses. Given horse's natural tendency to synchronize activity to promote group cohesion, questions remain about how group dynamics influence human-horse interactions. Group dynamics influence a variety of management scenarios, ranging from taking a horse out of its social group to the prospect of humans mimicking the horse's social system by taking a putative leadership role and seeking after an alpha position in the dominance hierarchy to achieve compliance. Yet, there is considerable debate about whether the roles horses attain in their social group are of any relevance in their reactions to humans. This article reviews the empirical data on social dynamics in horses, focusing on dominance and leadership theories and the merits of incorporating those concepts into the human-horse context. This will provide a constructive framework for informed debate and valuable guidance for owners managing group-kept horses and for optimizing human-horse interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0737-0806 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6712  
Permanent link to this record
 

 
Author (down) Harman, F.S.; Nicol, C.J.; Marin, H.E.; Ward, J.M.; Gonzalez, F.J.; Peters, J.M. doi  openurl
  Title Peroxisome proliferator-activated receptor-delta attenuates colon carcinogenesis Type Journal Article
  Year 2004 Publication Nature medicine Abbreviated Journal Nat Med  
  Volume 10 Issue 5 Pages 481-483  
  Keywords Animals; Azoxymethane/toxicity; Colonic Neoplasms/etiology/genetics/*prevention & control; Colonic Polyps/etiology/genetics/pathology/prevention & control; Disease Models, Animal; Mice; Mice, Knockout; Mice, Mutant Strains; Phenotype; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*physiology; Transcription Factors/deficiency/genetics/*physiology  
  Abstract Peroxisome proliferator-activated receptor-delta (PPAR-delta; also known as PPAR-beta) is expressed at high levels in colon tumors, but its contribution to colon cancer is unclear. We examined the role of PPAR-delta in colon carcinogenesis using PPAR-delta-deficient (Ppard(-/-)) mice. In both the Min mutant and chemically induced mouse models, colon polyp formation was significantly greater in mice nullizygous for PPAR-delta. In contrast to previous reports suggesting that activation of PPAR-delta potentiates colon polyp formation, here we show that PPAR-delta attenuates colon carcinogenesis.  
  Address Department of Veterinary Science and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. jmp21@psu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1078-8956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15048110 Approved no  
  Call Number refbase @ user @ Serial 77  
Permanent link to this record
 

 
Author (down) Harland, M.M.; Stewart, A.J.; Marshall, A.E.; Belknap, E.B. url  openurl
  Title Diagnosis of deafness in a horse by brainstem auditory evoked potential Type Journal Article
  Year 2006 Publication The Canadian Veterinary Journal. La Revue Veterinaire Canadienne Abbreviated Journal Can Vet J  
  Volume 47 Issue 2 Pages 151-154  
  Keywords Acoustic Stimulation/veterinary; Animals; Deafness/congenital/diagnosis/*veterinary; Evoked Potentials, Auditory, Brain Stem/*physiology; Horse Diseases/congenital/*diagnosis; Horses; Male; Pigmentation/physiology; Sensitivity and Specificity  
  Abstract Deafness was confirmed in a blue-eyed, 3-year-old, overo paint horse by brainstem auditory evoked potential. Congenital inherited deafness associated with lack of facial pigmentation was suspected. Assessment of hearing should be considered, especially in paint horses, at the time of pre-purchase examination. Brainstem auditory evoked potential assessment is well tolerated and accurate.  
  Address Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Wire Road, Auburn, Alabama, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-5286 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16579041 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5680  
Permanent link to this record
 

 
Author (down) Hanggi, E.B. url  doi
openurl 
  Title Discrimination learning based on relative size concepts in horses (Equus caballus) Type Journal Article
  Year 2003 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 83 Issue 3 Pages 201-213  
  Keywords Horse; Concept; Size transposition; Generalization; Learning; Training  
  Abstract This study explored whether or not horses (Equus caballus) could respond to stimuli using a concept based on relative size. In Experiment 1, after learning to respond to the larger of the two stimuli for six sets of two-dimensional (2D) training exemplars, one horse was tested for size transposition that used novel larger and smaller stimuli as well as three-dimensional (3D) objects (5 two-dimensional sets and 5 three-dimensional sets with large, medium, small, and tiny sizes). The horse correctly chose (significantly above chance) the larger of two stimuli regardless of novelty or dimension or combination. In Experiment 2, two additional horses were tested using a subset of the stimuli from Experiment 1. One horse was required to select the larger stimulus--as in Experiment 1--and the other the smaller stimulus. After learning the task, both horses responded correctly to new stimuli and showed size transposition. These results suggest that at least some horses are capable of solving problems based on relative size concepts. Moreover, they are able to generalize across situations that vary from flat, black shapes to objects of different materials and colors including balls, flower pots, and PVC connectors. These findings support earlier research that showed that horses could categorize certain stimuli, and provide new evidence that they are capable of using some form of concept for problem solving. Understanding that horses have more advanced learning abilities than was previously believed should help improve training methods and management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 398  
Permanent link to this record
 

 
Author (down) Hampton, R.R.; Shettleworth, S.J. openurl 
  Title Hippocampus and memory in a food-storing and in a nonstoring bird species Type Journal Article
  Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci  
  Volume 110 Issue 5 Pages 946-964  
  Keywords Animals; Appetitive Behavior/*physiology; Attention/physiology; Birds/*physiology; Brain Mapping; Feeding Behavior/*physiology; Mental Recall/*physiology; Organ Size/physiology; Orientation/*physiology; Retention (Psychology)/physiology; Species Specificity  
  Abstract Food-storing birds maintain in memory a large and constantly changing catalog of the locations of stored food. The hippocampus of food-storing black-capped chickadees (Parus atricapillus) is proportionally larger than that of nonstoring dark-eyed juncos (Junco hyemalis). Chickadees perform better than do juncos in an operant test of spatial non-matching-to-sample (SNMTS), and chickadees are more resistant to interference in this paradigm. Hippocampal lesions attenuate performance in SNMTS and increase interference. In tests of continuous spatial alternation (CSA), juncos perform better than chickadees. CSA performance also declines following hippocampal lesions. By itself, sensitivity of a given task to hippocampal damage does not predict the direction of memory differences between storing and nonstoring species.  
  Address Department of Psychology, University of Toronto, Ontario, Canada. robert@ln.nimh.nih.gov  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8918998 Approved no  
  Call Number refbase @ user @ Serial 375  
Permanent link to this record
 

 
Author (down) Hampton, R.R.; Shettleworth, S.J. openurl 
  Title Hippocampal lesions impair memory for location but not color in passerine birds Type Journal Article
  Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci  
  Volume 110 Issue 4 Pages 831-835  
  Keywords Animals; Appetitive Behavior/physiology; Birds/*physiology; Brain Mapping; Color Perception/*physiology; Discrimination Learning/physiology; Hippocampus/*physiology; Long-Term Potentiation/physiology; Mental Recall/*physiology; Orientation/*physiology; Species Specificity  
  Abstract The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8864273 Approved no  
  Call Number refbase @ user @ Serial 376  
Permanent link to this record
 

 
Author (down) Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G. openurl 
  Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
  Year 1995 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol  
  Volume 45 Issue 1 Pages 54-61  
  Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity  
  Abstract The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.  
  Address Department of Psychology, University of Toronto, Ontario, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7866771 Approved no  
  Call Number refbase @ user @ Serial 379  
Permanent link to this record
 

 
Author (down) Griffin, D.R. doi  openurl
  Title Animals know more than we used to think Type
  Year 2001 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 98 Issue 9 Pages 4833-4834  
  Keywords Animal Communication; Animals; Attention/physiology; Brain/physiology; Choice Behavior/physiology; Cognition/*physiology; Humans; Macaca mulatta/physiology/*psychology; Memory/*physiology; Optic Disk/physiology; Psychological Tests  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11320232 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2823  
Permanent link to this record
 

 
Author (down) Goodwin, D.; McGreevy, P.; Waran, N.; McLean, A. url  doi
openurl 
  Title How equitation science can elucidate and refine horsemanship techniques Type Journal Article
  Year 2009 Publication The Veterinary Journal Abbreviated Journal Special Issue: Equitation Science  
  Volume 181 Issue 1 Pages 5-11  
  Keywords Horse; Training; Equitation; Learning theory; Ethology; Cognition  
  Abstract The long-held belief that human dominance and equine submission are key to successful training and that the horse must be taught to [`]respect' the trainer infers that force is often used during training. Many horses respond by trialling unwelcome evasions, resistances and flight responses, which readily become established. When unable to cope with problem behaviours, some handlers in the past might have been encouraged to use harsh methods or devices while others may have called in a so-called [`]good horseman' or [`]horse whisperer' to remediate the horse. Frequently, the approaches such practitioners offer could not be applied by the horse's owner or trainer because of their lack of understanding or inability to apply the techniques. Often it seemed that these [`]horse-people' had magical ways with horses (e.g., they only had to whisper to them) that achieved impressive results although they had little motivation to divulge their techniques. As we begin to appreciate how to communicate with horses sensitively and consistently, misunderstandings and misinterpretations by horse and trainer should become less common. Recent studies have begun to reveal what comprises the simplest, most humane and most effective mechanisms in horse training and these advances are being matched by greater sharing of knowledge among practitioners. Indeed, various practitioners of what is referred to here as [`]natural horsemanship' now use techniques similar to the [`]whisperers' of old, but they are more open about their methods. Reputable horse trainers using natural horsemanship approaches are talented observers of horse behaviour and respond consistently and swiftly to the horse's subtle cues during training. For example, in the roundpen these trainers apply an aversive stimulus to prompt a flight response and then, when the horse slows down, moves toward them, or offers space-reducing affiliative signals, the trainer immediately modifies his/her agonistic signals, thus negatively reinforcing the desired response. Learning theory and equine ethology, the fundamentals of the emerging discipline of equitation science, can be used to explain almost all the behaviour modification that goes on in these contexts and in conventional horsemanship. By measuring and evaluating what works and what does not, equitation science has the potential to have a unifying effect on traditional practices and developing branches of equitation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1090-0233 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4826  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print