|   | 
Details
   web
Records
Author (down) Zucca, P.; Milos, N.; Vallortigara, G.
Title Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius) Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 243-258
Keywords Animals; *Behavior, Animal; Birds/*physiology; *Cognition; *Cues
Abstract Object permanence in Eurasian jays (Garrulus glandarius) was investigated using a complete version of the Uzgiris and Hunt scale 1. Nine hand-raised jays were studied, divided into two groups according to their different developmental stages (experiment 1, older jays: 2-3 months old, n = 4; experiment 2, younger jays: 15 days old, n = 5). In the first experiment, we investigated whether older jays could achieve piagetian stage 6 of object permanence. Tasks were administered in a fixed sequence (1-15) according to the protocols used in other avian species. The aim of the second experiment was to check whether testing very young jays before their development of “neophobia” could influence the achievement times of piagetian stages. Furthermore, in this experiment tasks were administered randomly to investigate whether the jays' achievement of stage 6 follows a fixed sequence related to the development of specific cognitive abilities. All jays tested in experiments 1 and 2 fully achieved piagetian stage 6 and no “A not B” errors were observed. Performance on visible displacement tasks was better than performance on invisible ones. The results of experiment 2 show that “neophobia” affected the response of jays in terms of achievement times; the older jays in experiment 1 took longer to pass all the tasks when compared with the younger, less neophobic, jays in experiment 2. With regard to the achieving order, jays followed a fixed sequence of acquisition in experiment 2, even if tasks were administered randomly, with the exception of one subject. The results of these experiments support the idea that piagetian stages of cognitive development exist in avian species and that they progress through relatively fixed sequences.
Address Department of Psychology, Laboratory of Animal Cognition and Comparative Neuroscience, Via S. Anastasio 12, 34100, Trieste, Italy. zucca@units.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:17242935 Approved no
Call Number Equine Behaviour @ team @ Serial 2423
Permanent link to this record
 

 
Author (down) Zucca, P.; Antonelli, F.; Vallortigara, G.
Title Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria) Type Journal Article
Year 2005 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 8 Issue 2 Pages 122-128
Keywords Animals; *Avoidance Learning; *Birds; Canaries; Charadriiformes; Coturnix; *Discrimination Learning; Orientation; *Space Perception; *Spatial Behavior; Species Specificity
Abstract Detour behaviour is the ability of an animal to reach a goal stimulus by moving round any interposed obstacle. It has been widely studied and has been proposed as a test of insight learning in several species of mammals, but few data are available in birds. A comparative study in three species of birds, belonging to different eco-ethological niches, allows a better understanding of the cognitive mechanism of such detour behaviour. Young quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria), 1 month old, 10-25 days old and 4-6 months old, respectively, were tested in a detour situation requiring them to abandon a clear view of a biologically interesting object (their own reflection in a mirror) in order to approach that object. Birds were placed in a closed corridor, at one end of which was a barrier through which the object was visible. Four different types of barrier were used: vertical bar, horizontal bar, grid and transparent. Two symmetrical apertures placed midline in the corridor allowed the birds to adopt routes passing around the barrier. After entering the apertures, birds could turn either right or left to re-establish social contact with the object in the absence of any local sensory cues emanating from it. Quails appeared able to solve the task, though their performance depended on the type of barrier used, which appeared to modulate their relative interest in approaching the object or in exploring the surroundings. Young herring gulls also showed excellent abilities to locate spatially the out-of-view object, except when the transparent barrier was used. Canaries, on the other hand, appeared completely unable to solve the detour task, whatever barrier was in use. It is suggested that these species differences can be accounted for in terms of adaptation to a terrestrial or aerial environment.
Address Laboratory of Animal Cognition and Comparative Neuroscience, Department of Psychology, University of Trieste, Via S. Anastasio 12, 34100, Trieste, Italy. zucca@units.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:15449104 Approved no
Call Number Equine Behaviour @ team @ Serial 2506
Permanent link to this record
 

 
Author (down) Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G.
Title Behavioural lateralization in sheep (Ovis aries) Type Journal Article
Year 2007 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.
Volume 184 Issue 1 Pages 72-80
Keywords Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization
Abstract This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6701
Permanent link to this record
 

 
Author (down) Ventolini, N.; Ferrero, E.A.; Sponza, S.; Della Chiesa, A.; Zucca, P.; Vallortigara, G.
Title Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the black-winged stilt Type Journal Article
Year 2005 Publication Animal Behaviour Abbreviated Journal Anim. Behav.
Volume 69 Issue 5 Pages 1077-1084
Keywords
Abstract We recorded preferential use of the left and right monocular visual field in black-winged stilts, Himantopus himantopus, during predatory pecking and during courtship and mating behaviour in a naturalistic setting. The stilts had a population-level preference for using their right monocular visual field before predatory pecking; pecks that followed right-hemifield detection were more likely to be successful than pecks that followed left-hemifield detection, as evinced by the occurrence of swallowing and shaking head movements after pecking. In contrast, shaking behaviour, a component of courtship displays, and copulatory attempts by males were more likely to occur when females were seen with the left monocular visual field. Asymmetric hemifield use observed in natural conditions raises interesting issues as to the costs and benefits of population-level behavioural lateralization in wild animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-3472 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5589
Permanent link to this record
 

 
Author (down) Vallortigara, G.; Rogers, L.J.
Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci
Volume 28 Issue 4 Pages 575-89; discussion 589-633
Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology
Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.
Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-525X ISBN Medium
Area Expedition Conference
Notes PMID:16209828 Approved no
Call Number Equine Behaviour @ team @ Serial 4622
Permanent link to this record
 

 
Author (down) Vallortigara, G.; Regolin, L.; Rigoni, M.; Zanforlin, M.
Title Delayed search for a concealed imprinted object in the domestic chick Type Journal Article
Year 1998 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 1 Issue 1 Pages 17-24
Keywords
Abstract Five-day-old chicks were accustomed to follow an imprinted object (a small red ball with which they had been reared) that was moving slowly in a large arena, until it disappeared behind an opaque screen. In experiments, each chick was initially confined in a transparent cage, from where it could see and track the ball while it moved towards, and then beyond, one of two screens. The screens could be either identical or differ in colour and pattern. Either immediately after the disappearance of the ball, or with a certain delay, the chick was released and allowed to search for its imprinted object behind either screen. The results showed that chicks took into account the directional cue provided by the ball movement and its concealment, up to a delay period of about 180 s, independently of the perceptual characteristics of the two screens. If an opaque partition was positioned in front of the transparent cage immediately after the ball had disappeared, so that, throughout the delay, neither the goal-object nor the two screens were visible, chicks were still capable of remembering and choosing the correct screen, though over a much shorter period of about 60 s. The results suggest that, at least in this precocial bird species, very young chicks can maintain some form of representation of the location where a social partner was last seen, and are also capable of continuously updating this representation so as to take into account successive displacements of the goal-object.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 3347
Permanent link to this record
 

 
Author (down) Vallortigara, G.; Chiandetti, C.; Sovrano, V.A.
Title Brain asymmetry (animal) Type Journal Article
Year 2011 Publication Wiley Interdisciplinary Reviews: Cognitive Science Abbreviated Journal WIREs Cogn Sci
Volume 2 Issue 2 Pages 146-157
Keywords
Abstract Once considered a uniquely human attribute, brain asymmetry has been proved to be ubiquitous among non-human animals. A synthetic review of evidence of animal lateralization in the motor, sensory, cognitive, and affective domains is provided, together with a discussion of its development and possible biological functions. It is argued that investigation of brain asymmetry in a comparative perspective may favor the link between classical neuropsychological studies and modern developmental and evolutionary biology approaches. WIREs Cogni Sci 2011 2 146–157 DOI: 10.1002/wcs.100 For further resources related to this article, please visit the WIREs website
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Inc. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1939-5086 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5687
Permanent link to this record
 

 
Author (down) Vallortigara, G.; Andrew, R.J.
Title Differential involvement of right and left hemisphere in individual recognition in the domestic chick Type Journal Article
Year 1994 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 33 Issue 1-2 Pages 41-57
Keywords Right hemisphere; Left hemisphere; Domestic fowl; Lateralization; Chick
Abstract Right hemisphere advantage in individual recognition (as shown by differences between response to strangers and companions) is clear in the domestic chick. Chicks using the left eye (and so, thanks to the complete optic decussation, predominantly the right hemisphere) discriminate between stranger and companion. Chicks using the right eye discriminate less clearly or not at all. The ability of left eyed chicks to respond to differences between strangers and companions stimuli is associated with a more general ability to detect and respond to novelty: this difference between left and right eyed chicks also holds for stimuli which are not social partners. The right hemisphere also shows advantage in tasks with a spatial component (topographical learning; response to change in the spatial context of a stimulus) in the chick, as in humans. Similar specialisations of the two hemispheres are also revealed in tests which involve olfactory cues presented by social partners. The special properties of the left hemisphere are less well established in the chick. Evidence reviewed here suggests that it tends to respond to selected properties of a stimulus and to use them to assign it to a category; such assignment then allows an appropriate response. When exposed to an imprinting stimulus (visual or auditory) a chick begins by using right eye or ear (suggesting left hemisphere control), and then shifts to the left eye or ear (suggesting right hemisphere control), as exposure continues. The left hemisphere here is thus involved whilst behaviour is dominated by vigorous response to releasing stimuli presented by an object. Subsequent learning about the full detailed properties of the stimulus, which is crucial for individual recognition, may explain the shift to right hemisphere control after prolonged exposure to the social stimulus. There is a marked sex difference in choice tests: females tend to choose companions in tests where males choose strangers. It is possible that this difference is specifically caused by stronger motivation to sustain social contact in female chicks, for which there is extensive evidence. However, sex differences in response to change in familiar stimuli are also marked in tests which do not involve social partners. Finally, in both sexes there are two periods during development in which there age-dependent shifts in bias to use one or other hemisphere. These periods (days 3-5 and 8-11) coincide with two major changes in the social behaviour of chicks reared by a hen in a normal brood. It is argued that one function of these periods is to bring fully into play the hemisphere most appropriate to the type of response to, and learning about, social partners which is needed at particular points in development. Parallels are discussed between the involvement of lateralised processes in the recognition of social partners in chicks and humans.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5341
Permanent link to this record
 

 
Author (down) Tommasi, L.; Vallortigara, G.
Title Searching for the center: spatial cognition in the domestic chick (Gallus gallus) Type Journal Article
Year 2000 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 26 Issue 4 Pages 477-486
Keywords Animals; Behavior, Animal/physiology; Chickens; Cognition/*physiology; Learning/physiology; Male; Space Perception/*physiology; Spatial Behavior/*physiology
Abstract Chicks learned to find food hidden under sawdust by ground-scratching in the central position of the floor of a closed arena. When tested inan arena of identical shape but a larger area, chicks searched at 2 different locations, one corresponding to the correct distance (i.e., center) in the smaller (training) arena and the other to the actual center of the test arena. When tested in an arena of the same shape but a smaller area, chicks searched in the center of it. These results suggest that chicks are able to encode information on the absolute and relative distance of the food from the walls of the arena. After training in the presence of a landmark located at the center of the arena, animals searched at the center even after the removal of the landmark. Marked changes in the height of the walls of the arena produced some displacement in searching behavior, suggesting that chicks used the angular size of the walls to estimate distances.
Address Department of General Psychology, University of Padua, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:11056887 Approved no
Call Number Equine Behaviour @ team @ Serial 2774
Permanent link to this record
 

 
Author (down) Sovrano, V.A.; Rainoldi, C.; Bisazza, A.; Vallortigara, G.
Title Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish Type Journal Article
Year 1999 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.
Volume 106 Issue 1-2 Pages 175-180
Keywords Predator fixation; Fish; Left-eye preference
Abstract It has recently been reported that predator inspection is more likely to occur when a companion (i.e. the mirror image of the test animal) is visible on the left rather than on the right side of mosquitofish Gambusia holbrooki. This very unexpected outcome could be consistent with the hypothesis of a preferential use of the right eye during sustained fixation of a predator as well as of a preferential use of the left eye during fixation of conspecifics. We measured the time spent in monocular viewing during inspection of their own mirror images in females of six species of fish, belonging to different families--G. holbrooki, Xenotoca eiseni, Phoxinus phoxinus, Pterophyllum scalare, Xenopoecilus sarasinorum, and Trichogaster trichopterus. Results revealed a consistent left-eye preference during sustained fixation in all of the five species. Males of G. holbrooki, which do not normally show any social behaviour, did not exhibit any eye preferences during mirror-image inspection. We found, however, that they could be induced to manifest a left-eye preference, likewise females, if tested soon after capture, when some affiliative tendencies can be observed. These findings add to current evidence in a variety of vertebrate species for preferential involvement of structures located in the right side of the brain in response to the viewing of conspecifics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 614
Permanent link to this record