|   | 
Details
   web
Records
Author (up) Houston, A.I.; McNamara, J.M.
Title Fighting for food: a dynamic version of the Hawk-Dove game Type Journal Article
Year 1988 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.
Volume 2 Issue 1 Pages 51-64
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 750
Permanent link to this record
 

 
Author (up) Huber, R.; van Staaden, M.J.; Kaufman, L.S.; Liem, K.F.
Title Microhabitat Use, Trophic Patterns, and the Evolution of Brain Structure in African Cichlids Type Journal Article
Year 1997 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol
Volume 50 Issue 3 Pages 167-182
Keywords
Abstract The species assemblages of cichlids in the three largest African Great Lakes are among the richest concentrations of vertebrate species on earth. The faunas are broadly similar in terms of trophic diversity, species richness, rates of endemism, and taxonomic composition, yet they are historically independent of each other. Hence, they offer a true and unique evolutionary experiment to test hypotheses concerning the mutual dependencies of ecology and brain morphology. We examined the brains of 189 species of cichlids from the three large lakes: Victoria, Tanganyika, and Malawi. A first paper demonstrated that patterns of evolutionary change in cichlid brain morphology are similar across taxonomic boundaries as well as across the three lakes [van Staaden et al., 1995 ZACS 98: 165–178]. Here we report a close relationship between the relative sizes of various brain structures and variables related to the utilization of habitat and prey. Causality is difficult to assign in this context, nonetheless, prey size and agility, turbidity levels, depth, and substrate complexity are all highly predictive of variation in brain structure. Areas associated with primary sensory functions such as vision and taste relate significantly to differences in feeding habits. Turbidity and depth are closely associated with differences in eye size, and large eyes are associated with species that pick plankton from the water column. Piscivorous taxa and others that utilize motile prey are characterized by a well developed optic tectum and a large cerebellum compared to species that prey on molluscs or plants. Structures relating to taste are well developed in species feeding on benthos over muddy or sandy substrates. The data militated against the existence of compensatory changes in brain structure. Thus enhanced development of a particular function is generally not accompanied by a parallel reduction of structures related to other modalities. Although genetic and environmental influences during ontogeny of the brain cannot be isolated, this study provides a rich source of hypotheses concerning the way the nervous system functions under various environmental conditions and how it has responded to natural selection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5454
Permanent link to this record
 

 
Author (up) Ishida, N.; Oyunsuren, T.; Mashima, S.; Mukoyama, H.; Saitou, N.
Title Mitochondrial DNA sequences of various species of the genus Equus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse Type Journal Article
Year 1995 Publication Journal of Molecular Evolution Abbreviated Journal J Mol Evol
Volume 41 Issue 2 Pages 180-188
Keywords Animals; Base Sequence; Chromosomes; Conserved Sequence/genetics; DNA, Mitochondrial/*genetics; Evolution; Genetic Variation/*genetics; Horses/*genetics; Molecular Sequence Data; *Phylogeny; RNA, Transfer, Pro/genetics; Sequence Alignment; Sequence Analysis, DNA
Abstract The noncoding region between tRNAPro and the large conserved sequence block is the most variable region in the mammalian mitochondrial DNA D-loop region. This variable region (ca. 270 bp) of four species of Equus, including Mongolian and Japanese native domestic horses as well as Przewalskii's (or Mongolian) wild horse, were sequenced. These data were compared with our recently published Thoroughbred horse mitochondrial DNA sequences. The evolutionary rate of this region among the four species of Equus was estimated to be 2-4 x 10(-8) per site per year. Phylogenetic trees of Equus species demonstrate that Przewalskii's wild horse is within the genetic variation among the domestic horse. This suggests that the chromosome number change (probably increase) of the Przewalskii's wild horse occurred rather recently.
Address Laboratory of Molecular and Cellular Biology, Japan Racing Association, Tokyo
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2844 ISBN Medium
Area Expedition Conference
Notes PMID:7666447 Approved no
Call Number Equine Behaviour @ team @ Serial 5042
Permanent link to this record
 

 
Author (up) Karenina, K.; Giljov, A.; Ingram, J.; Rowntree, V.J.; Malashichev, Y.
Title Lateralization of mother�infant interactions in a diverse range of mammal species Type Journal Article
Year 2017 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol
Volume 1 Issue Pages 0030 Ep -
Keywords
Abstract Left-cradling bias is a distinctive feature of maternal behaviour in humans and great apes, but its evolutionary origin remains unknown. In 11 species of marine and terrestrial mammal, we demonstrate consistent patterns of lateralization in mother�infant interactions, indicating right hemisphere dominance for social processing. In providing clear evidence that lateralized positioning is beneficial in mother�infant interactions, our results illustrate a significant impact of lateralization on individual fitness.
Address
Corporate Author Thesis
Publisher Nature Publishing Group SN - Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6040
Permanent link to this record
 

 
Author (up) Kerth, G.
Title Group decision-making in animal societies Type Book Chapter
Year 2010 Publication Animal Behaviour: Evolution and Mechanisms Abbreviated Journal
Volume Issue Pages 241-265
Keywords Life Sciences
Abstract Individuals need to coordinate their activities to benefit from group living. Thus group decisions are essential for societies, especially if group members cooperate with each other. Models show that shared (democratic) decisions outperform unshared (despotic) decisions, even if individuals disagree about actions. This is surprising as in most other contexts, differences in individual preferences lead to sex-, age-, or kin-specific behaviour. Empirical studies testing the predictions of the theoretical models have only recently begun to emerge. This applies particularly to group decisions in fission-fusion societies, where individuals can avoid decisions that are not in their interest. After outlining the basic ideas and theoretical models on group decision-making I focus on the available empirical studies. Originally most of the relevant studies have been on social insects and fish but recently an increasing number of studies on mammals and birds have been published, including some that deal with wild long-lived animals living in complex societies. This includes societies where group members have different interests, as in most mammals, and which have been less studied compared to eusocial insects that normally have no conflict among their colony members about what to do. I investigate whether the same decision rules apply in societies with conflict and without conflict, and outline open questions that remain to be studied. The chapter concludes with a synthesis on what is known about group decision-making in animals and an outlook on what I think should be done to answer the open questions.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor Kappeler, P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-642-02624-9 Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5381
Permanent link to this record
 

 
Author (up) Krueger, K.
Title Social Ecology of Horses Type Book Chapter
Year 2008 Publication Ecology of Social Evolution Abbreviated Journal
Volume Issue Pages 195-206
Keywords
Abstract Horses (Equidae ) are believed to clearly demonstrate the links between ecology and social organization. Their social cognitive abilities enable them to succeed in many different environments, including those provided for them by humans, or the ones domestic horses encounter when escaping from their human care takers. Living in groups takes different shapes in equids. Their aggregation and group cohesion can be explained by Hamilton“s selfish herd theory. However, when an individual joins and to which group it joins appears to be an active individual decision depending on predation pressure, intra group harassment and resource availability. The latest research concerning the social knowledge horses display in eavesdropping experiments affirms the need for an extension of simple herd concepts in horses for a cognitive component. Horses obviously realize the social composition of their group and determine their own position in it. The horses exceedingly flexible social behavior demands for explanations about the cognitive mechanisms, which allow them to make individual decisions. ”Ecology conditions like those that favour the evolution of open behavioural programs sometimes also favour the evolution of the beginnings of consciousness, by favouring conscious choice. Or in other words, consciousness originates with the choice that are left open by open behavioural programs." Popper (1977)
Address
Corporate Author Thesis
Publisher Springer Verlag Place of Publication Heidelberg Editor j. Korb and J. Heinze
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4387
Permanent link to this record
 

 
Author (up) Kruska, D.
Title Mammalian domestication and its effect on brain structure and behavior Type Book Chapter
Year 1988 Publication Intelligence and Evolutionary Biology Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication New York Editor Jerison, H.J.; Jerison, I.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Kruska1988 Serial 6232
Permanent link to this record
 

 
Author (up) Lefebvre, L.; Reader, S.M.; Sol, D.
Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.
Volume 63 Issue 4 Pages 233-246
Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology
Abstract Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4738
Permanent link to this record
 

 
Author (up) List, C.
Title Democracy in animal groups: a political science perspective Type Journal Article
Year 2004 Publication Trends in Ecology & Evolution (Personal Edition) Abbreviated Journal Trends Ecol Evol
Volume 19 Issue 4 Pages 168-169
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes PMID:16701250 Approved no
Call Number Equine Behaviour @ team @ Serial 5137
Permanent link to this record
 

 
Author (up) Lusseau, D.
Title Evidence for social role in a dolphin social network Type Journal Article
Year 2007 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.
Volume 21 Issue 3 Pages 357-366
Keywords
Abstract Abstract  Social animals have to take into consideration the behaviour of conspecifics when making decisions to go by their daily lives. These decisions affect their fitness and there is therefore an evolutionary pressure to try making the right choices. In many instances individuals will make their own choices and the behaviour of the group will be a democratic integration of everyone’s decision. However, in some instances it can be advantageous to follow the choice of a few individuals in the group if they have more information regarding the situation that has arisen. Here I provide early evidence that decisions about shifts in activity states in a population of bottlenose dolphin follow such a decision-making process. This unshared consensus is mediated by a non-vocal signal, which can be communicated globally within the dolphin school. These signals are emitted by individuals that tend to have more information about the behaviour of potential competitors because of their position in the social network. I hypothesise that this decision-making process emerged from the social structure of the population and the need to maintain mixed-sex schools.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5154
Permanent link to this record