|   | 
Details
   web
Records
Author Traversa, D.; Giangaspero, A.; Iorio, R.; Otranto, D.; Paoletti, B.; Gasser, R.B.
Title Semi-nested PCR for the specific detection of Habronema microstoma or Habronema muscae DNA in horse faeces Type Journal Article
Year 2004 Publication Parasitology Abbreviated Journal Parasitology
Volume 129 Issue Pt 6 Pages 733-739
Keywords Animals; DNA, Helminth/*analysis; DNA, Ribosomal Spacer/*chemistry; Feces/*chemistry; Female; Horse Diseases/*diagnosis/parasitology; Horses; Male; Polymerase Chain Reaction/*methods; Species Specificity; Spirurida Infections/diagnosis/*veterinary; Spiruroidea/*genetics
Abstract Habronema microstoma and Habronema muscae (Spirurida: Habronematidae) are parasitic nematodes which infect the stomach and/or skin of equids. The accurate diagnosis of gastric habronemosis is central to studying its epidemiology, but data on its distribution and prevalence are lacking, mainly due to the limitations of clinical and coprological diagnosis in live horses. To overcome this constraint, a two-step, semi-nested PCR-based assay was validated (utilizing genetic markers in the nuclear ribosomal DNA) for the specific amplification of H. microstoma or H. muscae DNA from the faeces from horses (n = 46) whose gastrointestinal parasite status had been determined at autopsy and whose faeces were examined previously using a conventional parasitological approach. Of these horses examined at autopsy, some harboured adults of either H. microstoma (n= 19) or H. muscae (n =4), and others (n = 7) harboured both species. Most of them were also infected with other parasites, including strongylid nematodes (subfamilies Cyathostominae and Strongylinae), bots and/or cestodes; there was no evidence of metazoan parasites in 2 horses. Larvated spirurid eggs were detected in the faeces of 1 of the 30 horses (3.3 %) shown to be infected with Habronema at autopsy. For this set of 46 samples, the PCR assay achieved a diagnostic specificity of 100 % and a sensitivity of approximately 97 % (being able to specifically detect as little as approximately 0.02 fg of Habronema DNA). The specificity of the assay was also tested using a panel of control DNA samples representing horse, the gastric spirurid Draschia megastoma and 26 other species of parasites from the alimentary tract of the horse. H. microstoma, H. muscae and D. megastoma could be readily differentiated from one another based on the sizes of their specific amplicons in the PCR. The results of this study showed that the performance of the PCR for the diagnosis of gastric habronemosis was similar to that of autopsy but substantially better than the traditional coprological examination procedure used. The ability to specifically diagnose gastric habronemosis in equids should have important implications for investigating the epidemiology and ecology of H. microstoma and H. muscae.
Address Department of Biomedical Comparative Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy. traversa@unite.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-1820 ISBN Medium
Area Expedition Conference
Notes PMID:15648696 Approved no
Call Number Equine Behaviour @ team @ Serial 2631
Permanent link to this record
 

 
Author Traversa, D.; Otranto, D.; Iorio, R.; Giangaspero, A.
Title Molecular characterization of Thelazia lacrymalis (Nematoda, Spirurida) affecting equids: a tool for vector identification Type Journal Article
Year 2005 Publication Molecular and Cellular Probes Abbreviated Journal Mol Cell Probes
Volume 19 Issue 4 Pages 245-249
Keywords Animals; Horse Diseases/parasitology; Horses/*parasitology; Insect Vectors/*parasitology; Muscidae/*parasitology; Polymerase Chain Reaction; Polymorphism, Restriction Fragment Length; Spirurida Infections/parasitology/veterinary; Thelazioidea/chemistry/*genetics
Abstract Equine thelaziosis caused by the eyeworm Thelazia lacrymalis is a parasitic disease transmitted by muscid flies. Although equine thelaziosis is known to have worldwide distribution, information on the epidemiology and presence of the intermediate hosts of T. lacrymalis is lacking. In the present work, a PCR-RFLP based assay on the first and/or second internal transcribed spacer (ITS1 and ITS2) of ribosomal DNA was developed for the detection of T. lacrymalis DNA in its putative vector(s). The sensitivity of the technique was also assessed. The restriction patterns obtained readily differentiated T. lacrymalis from four species of Musca (Diptera, Muscidae) (i.e. Musca autumnalis, Musca domestica, Musca larvipara and Musca osiris), which are potential vectors of equine eyeworms. The molecular assay presented herein is a useful tool to identify the intermediate host(s) of T. lacrymalis in natural conditions and to study its/their ecology and epidemiology.
Address Department of Biomedical Comparative Sciences, Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy. dtraversa@unite.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0890-8508 ISBN Medium
Area Expedition Conference
Notes PMID:16038792 Approved no
Call Number Equine Behaviour @ team @ Serial 2626
Permanent link to this record
 

 
Author Wallner, B.; Brem, G.; Muller, M.; Achmann, R.
Title Fixed nucleotide differences on the Y chromosome indicate clear divergence between Equus przewalskii and Equus caballus Type Journal Article
Year 2003 Publication Animal Genetics Abbreviated Journal Anim Genet
Volume 34 Issue 6 Pages 453-456
Keywords Animals; Base Sequence; DNA, Mitochondrial/genetics; Genetic Variation/*genetics; Horses/classification/*genetics; Male; Molecular Sequence Data; Phylogeny; Probability; Species Specificity; Y Chromosome/*genetics
Abstract The phylogenetic relationship between Equus przewalskii and E. caballus is often a matter of debate. Although these taxa have different chromosome numbers, they do not form monophyletic clades in a phylogenetic tree based on mtDNA sequences. Here we report sequence variation from five newly identified Y chromosome regions of the horse. Two fixed nucleotide differences on the Y chromosome clearly display Przewalski's horse and domestic horse as sister taxa. At both positions the Przewalski's horse haplotype shows the ancestral state, in common with the members of the zebra/ass lineage. We discuss the factors that may have led to the differences in mtDNA and Y-chromosomal observations.
Address Institut fur Tierzucht und Genetik, Veterinarmedizinische Universitat Wien, Veterinarplatz, Wien, Austria. wallner@i122server.vu-wien.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-9146 ISBN Medium
Area Expedition Conference
Notes PMID:14687077 Approved no
Call Number Equine Behaviour @ team @ Serial 5038
Permanent link to this record
 

 
Author Weiss, A.; King, J.E.; Figueredo, A.J.
Title The heritability of personality factors in chimpanzees (Pan troglodytes) Type Journal Article
Year 2000 Publication Behavior Genetics Abbreviated Journal Behav Genet
Volume 30 Issue 3 Pages 213-221
Keywords Animals; Female; Humans; Male; Models, Genetic; Pan troglodytes/*genetics; Personality/*genetics; Social Environment
Abstract Human personality and behavior genetic studies have resulted in a growing consensus that five heritable factors account for most variance in human personality. Prior research showed that chimpanzee personality is composed of a dominance-related factor and five human-like factors--Surgency, Dependability, Emotional Stability, Agreeableness, and Openness. Genetic, shared zoo, and nonshared environmental variance components of the six factors were estimated by regressing squared phenotypic differences of all possible pairs of chimpanzees onto 1 – Rij, where Rij equals the degree of relationship and a variable indicating whether the pair was housed in the same zoo. Dominance showed significant narrow-sense heritability. Shared zoo effects accounted for only a negligible proportion of the variance for all factors.
Address Department of Psychology, University of Arizona, Tucson 85721, USA. aweiss@u.arizona.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8244 ISBN Medium
Area Expedition Conference
Notes PMID:11105395 Approved no
Call Number Equine Behaviour @ team @ Serial 4143
Permanent link to this record
 

 
Author Yokoyama, S.; Radlwimmer, F.B.
Title The molecular genetics of red and green color vision in mammals Type Journal Article
Year 1999 Publication Genetics Abbreviated Journal Genetics
Volume 153 Issue 2 Pages 919-932
Keywords Amino Acid Sequence; Animals; Base Sequence; COS Cells; Cats; Color Perception/*genetics; DNA Primers; Deer; Dolphins; *Evolution, Molecular; Goats; Guinea Pigs; Horses; Humans; Mammals/*genetics/physiology; Mice; Molecular Sequence Data; Opsin/biosynthesis/chemistry/*genetics; *Phylogeny; Rabbits; Rats; Recombinant Proteins/biosynthesis; Reverse Transcriptase Polymerase Chain Reaction; Sciuridae; Sequence Alignment; Sequence Homology, Amino Acid; Transfection
Abstract To elucidate the molecular mechanisms of red-green color vision in mammals, we have cloned and sequenced the red and green opsin cDNAs of cat (Felis catus), horse (Equus caballus), gray squirrel (Sciurus carolinensis), white-tailed deer (Odocoileus virginianus), and guinea pig (Cavia porcellus). These opsins were expressed in COS1 cells and reconstituted with 11-cis-retinal. The purified visual pigments of the cat, horse, squirrel, deer, and guinea pig have lambdamax values at 553, 545, 532, 531, and 516 nm, respectively, which are precise to within +/-1 nm. We also regenerated the “true” red pigment of goldfish (Carassius auratus), which has a lambdamax value at 559 +/- 4 nm. Multiple linear regression analyses show that S180A, H197Y, Y277F, T285A, and A308S shift the lambdamax values of the red and green pigments in mammals toward blue by 7, 28, 7, 15, and 16 nm, respectively, and the reverse amino acid changes toward red by the same extents. The additive effects of these amino acid changes fully explain the red-green color vision in a wide range of mammalian species, goldfish, American chameleon (Anolis carolinensis), and pigeon (Columba livia).
Address Department of Biology, Syracuse University, Syracuse, New York 13244, USA. syokoyam@mailbox.syr.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes PMID:10511567 Approved no
Call Number Equine Behaviour @ team @ Serial 4063
Permanent link to this record
 

 
Author Zhao, C.J.; Qin, Y.H.; Lee, X.H.; Wu, C.
Title Molecular and cytogenetic paternity testing of a male offspring of a hinny Type Journal Article
Year 2006 Publication Journal of Animal Breeding and Genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie Abbreviated Journal J Anim Breed Genet
Volume 123 Issue 6 Pages 403-405
Keywords Animals; Cytogenetic Analysis; DNA, Mitochondrial/genetics; Equidae/*genetics; Female; Horses/genetics; Hybridization, Genetic; Male; Microsatellite Repeats; Pedigree; Protamines/genetics; Sexual Behavior, Animal
Abstract An alleged male foal of a female mule, whose sire and grandparents were unknown, was identified for its pedigree. Parentage testing was conducted by comparing polymorphism of 12 microsatellite DNA sites and mitochondrial D-loop sequences of the male foal and the female mule. Both the sequence analysis of species-specific DNA fragments and a cytogenetic analysis were performed to identify the species of the foal and its parents. The results showed that the alleged female mule is actually a hinny, and the male foal, which possesses 62 chromosomes, qualifies as an offspring of the female hinny and a jack donkey.
Address Equine Center, China Agricultural University, Beijing, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0931-2668 ISBN Medium
Area Expedition Conference
Notes PMID:17177697 Approved no
Call Number Serial 1846
Permanent link to this record