toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. url  doi
openurl 
  Title Intraspecific competition and coordination in the evolution of lateralization Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 861-866  
  Keywords  
  Abstract Recent studies have revealed a variety of left–right asymmetries among vertebrates and invertebrates. In many species, left- and right-lateralized individuals coexist, but in unequal numbers (‘population-level’ lateralization). It has been argued that brain lateralization increases individual efficiency (e.g. avoiding unnecessary duplication of neural circuitry and reducing interference between functions), thus counteracting the ecological disadvantages of lateral biases in behaviour (making individual behaviour more predictable to other organisms). However, individual efficiency does not require a definite proportion of left- and right-lateralized individuals. Thus, such arguments do not explain population-level lateralization. We have previously shown that, in the context of prey–predator interactions, population-level lateralization can arise as an evolutionarily stable strategy when individually asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Here, we extend our model showing that populations consisting of left- and right-lateralized individuals in unequal numbers can be evolutionarily stable, based solely on strategic factors arising from the balance between antagonistic (competitive) and synergistic (cooperative) interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 5346  
Permanent link to this record
 

 
Author Andrew, R.J.; Osorio, D.; Budaev, S. url  doi
openurl 
  Title Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 983-989  
  Keywords  
  Abstract Some aspects of lateralization are widespread. This is clear for the association between left-eye (LE) use and readiness to respond intensely to releasing stimuli presented by others, which has been found in representatives of all major groups of tetrapods and in fishes. In the chick, this behavioural asymmetry is linked developmentally to greater ability to sustain response against distracting stimuli with right-eye (RE) use, in that both reverse with the reversal of the normal RE exposure to light. In the zebrafish, the same two asymmetries (normally) have similar associations with the LE and the RE, and both also reverse together (owing to epithalamic reversal). Here, we show that light exposure early in development is needed in zebrafish to generate both asymmetries. Dark development largely abolishes both the enhanced abilities, confirming their linkage. Resemblance to the chick is increased by the survival in the chick, after dark development, of higher ability to assess familiarity of complex stimuli when using the LE. A somewhat similar ability survives in dark-developed zebrafish. Here, LE use causes lesser reliance on a single recent experience than on longer term past experience in the assessment of novelty. Such resemblances between a fish and a bird suggest that we should look not only for resemblances between different groups of vertebrates in the most common overall pattern of lateralization, but also for possible resemblances in the nature of inter-individual variation and in the way in which it is generated during development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 5370  
Permanent link to this record
 

 
Author Daisley, J.N.; Mascalzoni, E.; Rosa-Salva, O.; Rugani, R.; Regolin, L. url  doi
openurl 
  Title Lateralization of social cognition in the domestic chicken (Gallus gallus) Type Journal Article
  Year 2009 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 364 Issue 1519 Pages 965-981  
  Keywords  
  Abstract In this paper, we report on the ongoing work in our laboratories on the effect of lateralization produced by light exposure in the egg on social cognition in the domestic chick (Gallus gallus). The domestic chick possesses a lateralized visual system. This has effects on the chick's perception towards and interaction with its environment. This includes its ability to live successfully within a social group. We show that there is a tendency for right brain hemisphere dominance when performing social cognitive actions. As such, chicks show a left hemispatial bias for approaching a signalled target object, tend to perceive gaze and faces of human-like masks more effectively when using their left eye, are able to inhibit a pecking response more effectively when viewing a neighbour tasting a bitter substance with their left eye, and are better able to perform a transitive inference task when exposed to light in the egg and when forced to use their left eye only compared to dark-hatched or right eye chicks. Some of these effects were sex specific, with male chicks tending to show an increased effect of lateralization on their behaviours. These data are discussed in terms of overall social cognition in group living.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 5371  
Permanent link to this record
 

 
Author Thornton Alex; Lukas Dieter url  doi
openurl 
  Title Individual variation in cognitive performance: developmental and evolutionary perspectives Type Journal Article
  Year 2012 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 367 Issue 1603 Pages 2773-2783  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1098/rstb.2012.0214 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 6555  
Permanent link to this record
 

 
Author Tebbich Sabine; Griffin Andrea S.; Peschl Markus F.; Sterelny Kim url  doi
openurl 
  Title From mechanisms to function: an integrated framework of animal innovation Type Journal Article
  Year 2016 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 371 Issue 1690 Pages 20150195  
  Keywords  
  Abstract Animal innovations range from the discovery of novel food types to the invention of completely novel behaviours. Innovations can give access to new opportunities, and thus enable innovating agents to invade and create novel niches. This in turn can pave the way for morphological adaptation and adaptive radiation. The mechanisms that make innovations possible are probably as diverse as the innovations themselves. So too are their evolutionary consequences. Perhaps because of this diversity, we lack a unifying framework that links mechanism to function. We propose a framework for animal innovation that describes the interactions between mechanism, fitness benefit and evolutionary significance, and which suggests an expanded range of experimental approaches. In doing so, we split innovation into factors (components and phases) that can be manipulated systematically, and which can be investigated both experimentally and with correlational studies. We apply this framework to a selection of cases, showing how it helps us ask more precise questions and design more revealing experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1098/rstb.2015.0195 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 6557  
Permanent link to this record
 

 
Author Mann Janet; Patterson Eric M. url  doi
openurl 
  Title Tool use by aquatic animals Type Journal Article
  Year 2013 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 368 Issue 1630 Pages 20120424  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1098/rstb.2012.0424 Approved (up) no  
  Call Number Equine Behaviour @ team @ Serial 6579  
Permanent link to this record
 

 
Author Sumpter, D.J.T. url  doi
openurl 
  Title The principles of collective animal behaviour Type Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1465 Pages 5-22  
  Keywords  
  Abstract In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 10.1098/rstb.2005.1733 Approved (up) yes  
  Call Number Equine Behaviour @ team @ Serial 5145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print