|   | 
Details
   web
Records
Author Rogers, L.J.
Title Evolution of hemispheric specialization: advantages and disadvantages Type Journal Article
Year 2000 Publication Brain and Language Abbreviated Journal Brain Lang
Volume 73 Issue 2 Pages 236-253
Keywords Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology
Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.
Address (down) Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-934X ISBN Medium
Area Expedition Conference
Notes PMID:10856176 Approved no
Call Number Equine Behaviour @ team @ Serial 4621
Permanent link to this record
 

 
Author Healy,S.; Braithwaite, V
Title Cognitive ecology: a field of substance? Type Journal Article
Year 2000 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol
Volume 15 Issue 1 Pages 22-26
Keywords Cognitive ecology; Neuroethology; Cognition; Ecology; Evolution; Orientation mechanisms
Abstract In 1993, Les Real invented the label 'cognitive ecology'. This label was intended for work that brought cognitive science and behavioural ecology together. Real's article stressed the importance of such an approach to the understanding of behaviour. At the end of a decade in which more interdisciplinary work on behaviour has been seen than for many years, it is time to assess whether cognitive ecology is a label describing an active field.
Address (down) Division of Biological Sciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JT
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes PMID:10603501 Approved no
Call Number refbase @ user @ Serial 837
Permanent link to this record
 

 
Author Kiltie, R.A.; Fan, J.; Laine, A.F.
Title A wavelet-based metric for visual texture discrimination with applications in evolutionary ecology Type Journal Article
Year 1995 Publication Mathematical Biosciences Abbreviated Journal Math Biosci
Volume 126 Issue 1 Pages 21-39
Keywords Animals; Carnivora; *Ecology; Equidae; *Evolution; Humans; Mathematics; Models, Biological; Moths; *Pattern Recognition, Visual; Pigmentation
Abstract Much work on natural and sexual selection is concerned with the conspicuousness of visual patterns (textures) on animal and plant surfaces. Previous attempts by evolutionary biologists to quantify apparency of such textures have involved subjective estimates of conspicuousness or statistical analyses based on transect samples. We present a method based on wavelet analysis that avoids subjectivity and that uses more of the information in image textures than transects do. Like the human visual system for texture discrimination, and probably like that of other vertebrates, this method is based on localized analysis of orientation and frequency components of the patterns composing visual textures. As examples of the metric's utility, we present analyses of crypsis for tigers, zebras, and peppered moth morphs.
Address (down) Department of Zoology, University of Florida, Gainesville
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5564 ISBN Medium
Area Expedition Conference
Notes PMID:7696817 Approved no
Call Number Equine Behaviour @ team @ Serial 2660
Permanent link to this record
 

 
Author Reader, S.M.; Laland, K.N.
Title Social intelligence, innovation, and enhanced brain size in primates Type Journal Article
Year 2002 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.
Volume 99 Issue 7 Pages 4436-4441
Keywords Animals; Brain/*anatomy & histology; Evolution; *Intelligence; Learning; Primates/*anatomy & histology/*psychology; Social Behavior
Abstract Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and “intelligence” are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social learning, and tool use, to show that brain size and cognitive capacity are indeed correlated. A comparative analysis of 533 instances of innovation, 445 observations of social learning, and 607 episodes of tool use established that social learning, innovation, and tool use frequencies are positively correlated with species' relative and absolute “executive” brain volumes, after controlling for phylogeny and research effort. Moreover, innovation and social learning frequencies covary across species, in conflict with the view that there is an evolutionary tradeoff between reliance on individual experience and social cues. These findings provide an empirical link between behavioral innovation, social learning capacities, and brain size in mammals. The ability to learn from others, invent new behaviors, and use tools may have played pivotal roles in primate brain evolution.
Address (down) Department of Zoology, University of Cambridge, High Street, Madingley, Cambridge CB3 8AA, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:11891325 Approved no
Call Number Serial 2149
Permanent link to this record
 

 
Author Bouchard, T.J.J.; Loehlin, J.C.
Title Genes, evolution, and personality Type Journal Article
Year 2001 Publication Behavior Genetics Abbreviated Journal Behav Genet
Volume 31 Issue 3 Pages 243-273
Keywords Animals; *Evolution; Genetics, Behavioral; Humans; Individuality; Personality/*genetics; Twin Studies
Abstract There is abundant evidence, some of it reviewed in this paper, that personality traits are substantially influenced by the genes. Much remains to be understood about how and why this is the case. We argue that placing the behavior genetics of personality in the context of epidemiology, evolutionary psychology, and neighboring psychological domains such as interests and attitudes should help lead to new insights. We suggest that important methodological advances, such as measuring traits from multiple viewpoints, using large samples, and analyzing data by modern multivariate techniques, have already led to major changes in our view of such perennial puzzles as the role of “unshared environment” in personality. In the long run, but not yet, approaches via molecular genetics and brain physiology may also make decisive contributions to understanding the heritability of personality traits. We conclude that the behavior genetics of personality is alive and flourishing but that there remains ample scope for new growth and that much social science research is seriously compromised if it does not incorporate genetic variation in its explanatory models.
Address (down) Department of Psychology. University of Minnesota, Minneapolis 55455, USA. bouch001@tc.umn.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8244 ISBN Medium
Area Expedition Conference
Notes PMID:11699599 Approved no
Call Number Equine Behaviour @ team @ Serial 4142
Permanent link to this record
 

 
Author Macphail, E.M.
Title Cognitive function in mammals: the evolutionary perspective Type Journal Article
Year 1996 Publication Brain research. Cognitive brain research Abbreviated Journal Brain Res Cogn Brain Res
Volume 3 Issue 3-4 Pages 279-290
Keywords Animals; Cognition/*physiology; Conditioning (Psychology)/*physiology; Evolution; Humans; Learning/*physiology; Task Performance and Analysis
Abstract The work of behavioural pharmacologists has concentrated on small animals, such as rodents and pigeons. The validity of extrapolation of their findings to humans depends upon the existence of parallels in both physiology and psychology between these animals and humans. This paper considers the question whether there are in fact substantial cognitive parallels between, first, different non-human groups of vertebrates and, second, non-humans and humans. Behavioural data from 'simple' tasks, such as habituation and conditioning, do not point to species differences among vertebrates. Using examples that concentrate on the performance of rodents and birds, it is argued that, similarly, data from more complex tasks (learning-set formation, transitive inference, and spatial memory serve as examples) reveal few if any cognitive differences amongst non-human vertebrates. This conclusion supports the notion that association formation may be the critical problem-solving process available to non-human animals; associative mechanisms are assumed to have evolved to detect causal links between events, and would therefore be relevant in all ecological niches. In agreement with this view, recent advances in comparative neurology show striking parallels in functional organisation of mammalian and avian telencephalon. Finally, it is argued that although the peculiarly human capacity for language marks a large cognitive contrast between humans and non-humans, there is good evidence-in particular, from work on implicit learning--that the learning mechanisms available to non--humans are present and do play an important role in human cognition.
Address (down) Department of Psychology, University of York at Heslington, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-6410 ISBN Medium
Area Expedition Conference
Notes PMID:8806029 Approved no
Call Number refbase @ user @ Serial 603
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Taking the best for learning Type Journal Article
Year 2005 Publication Behavioural processes Abbreviated Journal Behav. Process.
Volume 69 Issue 2 Pages 147-9; author reply 159-63
Keywords *Algorithms; Animals; *Behavior, Animal; Decision Making; Evolution; *Learning; *Models, Theoretical
Abstract Examples of how animals learn when multiple, sometimes redundant, cues are present provide further examples not considered by Hutchinson and Gigerenzer that seem to fit the principle of taking the best. “The best” may the most valid cue in the present circumstances; evolution may also produce species-specific biases to use the most functionally relevant cues.
Address (down) Department of Psychology, University of Toronto, Toronto, Ont., Canada M5S 3G3. shettle@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes PMID:15845301 Approved no
Call Number refbase @ user @ Serial 361
Permanent link to this record
 

 
Author Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G.
Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
Year 1995 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 45 Issue 1 Pages 54-61
Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity
Abstract The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.
Address (down) Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:7866771 Approved no
Call Number refbase @ user @ Serial 379
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Varieties of learning and memory in animals Type Journal Article
Year 1993 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 19 Issue 1 Pages 5-14
Keywords Animals; Association Learning; Birds; Conditioning, Classical; Evolution; Imprinting (Psychology); *Learning; *Memory; Social Environment; Species Specificity; Taste
Abstract It is often assumed that there is more than one kind of learning--or more than one memory system--each of which is specialized for a different function. Yet, the criteria by which the varieties of learning and memory should be distinguished are seldom clear. Learning and memory phenomena can differ from one another across species or situations (and thus be specialized) in a number of different ways. What is needed is a consistent theoretical approach to the whole range of learning phenomena, and one is explored here. Parallels and contrasts in the study of sensory systems illustrate one way to integrate the study of general mechanisms with an appreciation of species-specific adaptations.
Address (down) Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:8418217 Approved no
Call Number refbase @ user @ Serial 380
Permanent link to this record
 

 
Author Wasserman, E.A.
Title The science of animal cognition: past, present, and future Type Journal Article
Year 1997 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 23 Issue 2 Pages 123-135
Keywords Animal Communication; Animal Population Groups/*psychology; Animals; Behavior, Animal; Behavioral Sciences/*trends; *Cognition; Evolution; Forecasting; Humans; Intelligence
Abstract The field of animal cognition is strongly rooted in the philosophy of mind and in the theory of evolution. Despite these strong roots, work during the most famous and active period in the history of our science-the 1930s, 1940s, and 1950s-may have diverted us from the very questions that were of greatest initial interest to the comparative analysis of learning and behavior. Subsequently, the field has been in steady decline despite its increasing breadth and sophistication. Renewal of the field of animal cognition may require a return to the original questions of animal communication and intelligence using the most advanced tools of modern psychological science. Reclaiming center stage in contemporary psychology will be difficult; planning that effort with a host of strategies should enhance the chances of success.
Address (down) Department of Psychology, University of Iowa, Iowa City 52242-1407, USA. ed-wasserman@uiowa.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:9095537 Approved no
Call Number Equine Behaviour @ team @ Serial 2779
Permanent link to this record