toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Benard, J.; Stach, S.; Giurfa, M. doi  openurl
  Title Categorization of visual stimuli in the honeybee Apis mellifera Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 4 Pages 257-270  
  Keywords Animals; Bees/*physiology; Classification; Cognition/*physiology; Discrimination Learning/*physiology; Generalization, Stimulus/physiology; Pattern Recognition, Visual/*physiology; Photic Stimulation; Transfer (Psychology)/*physiology; Visual Perception/*physiology  
  Abstract Categorization refers to the classification of perceptual input into defined functional groups. We present and discuss evidence suggesting that stimulus categorization can also be found in an invertebrate, the honeybee Apis mellifera, thus underlining the generality across species of this cognitive process. Honeybees show positive transfer of appropriate responding from a trained to a novel set of visual stimuli. Such a transfer was demonstrated for specific isolated features such as symmetry or orientation, but also for assemblies (layouts) of features. Although transfer from training to novel stimuli can be achieved by stimulus generalization of the training stimuli, most of these transfer tests involved clearly distinguishable stimuli for which generalization would be reduced. Though in most cases specific experimental controls such as stimulus balance and discriminability are still required, it seems appropriate to characterize the performance of honeybees as reflecting categorization. Further experiments should address the issue of which categorization theory accounts better for the visual performances of honeybees.  
  Address (up) Centre de Recherches sur la Cognition Animale (UMR 5169), CNRS – Universite Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 4, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16909238 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2446  
Permanent link to this record
 

 
Author West, R.E.; Young, R.J. doi  openurl
  Title Do domestic dogs show any evidence of being able to count? Type Journal Article
  Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 5 Issue 3 Pages 183-186  
  Keywords Animal Feed; Animals; Behavior, Animal; *Cognition; *Dogs; Female; Male; *Mathematics; Reinforcement (Psychology); Visual Perception  
  Abstract Numerical competence has been demonstrated in a wide range of animal species. The level of numerical abilities shown ranges from simple relative numerousness judgements to true counting. In this study we used the preferential looking technique to test whether 11 pet dogs could count. The dogs were presented with three simple calculations: “1+1=2”; “1+1=1”; and “1+1=3”. These calculations were performed by presenting the dogs with treats that were placed behind a screen that allowed manipulation of the outcome of the calculation. When the dogs expected the outcome they spent the same amount of time looking at the result of the calculation as they did on the initial presentation. However, when the result was unexpected dogs spent significantly longer looking at the outcome of the calculation. The results suggest that the dogs were anticipating the outcome of the calculations they observed, thus suggesting that dogs may have a rudimentary ability to count.  
  Address (up) De Montfort University-Lincoln, Caythorpe, Grantham, Lincolnshire, NG32 3EP, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12357291 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2594  
Permanent link to this record
 

 
Author Stoet, G.; Snyder, L.H. doi  openurl
  Title Task preparation in macaque monkeys ( Macaca mulatta) Type Journal Article
  Year 2003 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 6 Issue 2 Pages 121-130  
  Keywords Animals; *Cognition; Conditioning, Classical; Macaca mulatta/*psychology; Male; Reaction Time; Task Performance and Analysis; Visual Perception  
  Abstract We investigated whether macaque monkeys possess the ability to prepare abstract tasks in advance. We trained two monkeys to use different stimulus-response (S-R) mappings. On each trial, monkeys were first informed with a visual cue which of two S-R mapping to use. Following a delay, a visual target was presented to which they would respond with a left or right button-press. We manipulated delay time between cue and target and found that performance was faster and more accurate with longer delays, suggesting that monkeys used the delay time to prepare each task in advance.  
  Address (up) Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S Euclid Ave., Box 8108, St. Louis, MO 63110, USA. stoet@pcg.wustl.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12721788 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2572  
Permanent link to this record
 

 
Author Plotnik, J.; Nelson, P.A.; de Waal, F.B.M. openurl 
  Title Visual field information in the face perception of chimpanzees (Pan troglodytes) Type Journal Article
  Year 2003 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann N Y Acad Sci  
  Volume 1000 Issue Pages 94-98  
  Keywords Animals; *Facial Expression; Pan troglodytes; Recognition (Psychology); Visual Fields/*physiology; Visual Perception/*physiology  
  Abstract Evidence for a visual field advantage (VFA) in the face perception of chimpanzees was investigated using a modification of a free-vision task. Four of six chimpanzee subjects previously trained on a computer joystick match-to-sample paradigm were able to distinguish between images of neutral face chimeras consisting of two left sides (LL) or right sides (RR) of the face. While an individual's ability to make this distinction would be unlikely to determine their suitability for the VFA tests, it was important to establish that distinctive information was available in test images. Data were then recorded on their choice of the LL vs. RR chimera as a match to the true, neutral image; a bias for one of these options would indicate an hemispatial visual field advantage. Results suggest that chimpanzees, unlike humans, do not exhibit a left visual field advantage. These results have important implications for studies on laterality and asymmetry in facial signals and their perception in primates.  
  Address (up) Department of Animal Science, Cornell University, Ithaca, New York 14853, USA. jmp63@cornell.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:14766624 Approved no  
  Call Number refbase @ user @ Serial 175  
Permanent link to this record
 

 
Author Hauser, M.D.; Kralik, J.; Botto-Mahan, C.; Garrett, M.; Oser, J. openurl 
  Title Self-recognition in primates: phylogeny and the salience of species-typical features Type Journal Article
  Year 1995 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U.S.A.  
  Volume 92 Issue 23 Pages 10811-10814  
  Keywords Animals; *Behavior, Animal; *Cognition; Discrimination (Psychology); Exploratory Behavior; Female; Hair Color; Male; Phylogeny; Psychology, Comparative; Research Design; Saguinus/*psychology; *Self Concept; Species Specificity; Touch; *Visual Perception  
  Abstract Self-recognition has been explored in nonlinguistic organisms by recording whether individuals touch a dye-marked area on visually inaccessible parts of their face while looking in a mirror or inspect parts of their body while using the mirror's reflection. Only chimpanzees, gorillas, orangutans, and humans over the age of approximately 2 years consistently evidence self-directed mirror-guided behavior without experimenter training. To evaluate the inferred phylogenetic gap between hominoids and other animals, a modified dye-mark test was conducted with cotton-top tamarins (Saguinus oedipus), a New World monkey species. The white hair on the tamarins' head was color-dyed, thereby significantly altering a visually distinctive species-typical feature. Only individuals with dyed hair and prior mirror exposure touched their head while looking in the mirror. They looked longer in the mirror than controls, and some individuals used the mirror to observe visually inaccessible body parts. Prior failures to pass the mirror test may have been due to methodological problems, rather than to phylogenetic differences in the capacity for self-recognition. Specifically, an individual's sensitivity to experimentally modified parts of its body may depend crucially on the relative saliency of the modified part (e.g., face versus hair). Moreover, and in contrast to previous claims, we suggest that the mirror test may not be sufficient for assessing the concept of self or mental state attribution in nonlinguistic organisms.  
  Address (up) Department of Anthropology, Harvard University, Cambridge, MA 02138, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7479889 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2825  
Permanent link to this record
 

 
Author Barry, K.L.; Goth, A. doi  openurl
  Title Call recognition in chicks of the Australian brush-turkey (Alectura lathami) Type Journal Article
  Year 2006 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 9 Issue 1 Pages 47-54  
  Keywords *Animal Communication; Animals; Australia; Cues; Galliformes/*physiology; Robotics; *Social Behavior; Species Specificity; Visual Perception  
  Abstract Most birds rely on imprinting and experience with conspecifics to learn species-specific recognition cues. Australian brush-turkeys (Alectura lathami) do not imprint and form no bonds with parents. They hatch asynchronously, disperse widely and meet juvenile conspecifics at an unpredictable age. Nevertheless, in captivity, hatchlings respond to other chicks. A recent study, which involved the use of robotic models, found that chicks prefer to approach robots that emit specific visual cues. Here, we evaluated their response to acoustic cues, which usually play an important role in avian social cognition. However, in simultaneous choice tests, neither 2-day-old nor 9-day-old chicks preferred the choice arm with playback of either chick or adult conspecific calls over the arm containing a silent loudspeaker. Chicks of both age classes, however, scanned their surroundings more during chick playback, and the response was thus consistent in younger and older chicks. We also presented the chicks with robotic models, either with or without playback of chick calls. They did not approach the calling robot more than they did the silent robot, indicating that the combination of visual and acoustic cues does not evoke a stronger response. These results will allow further comparison with species that face similar cognitive demands in the wild, such as brood parasites. Such a comparative approach, which is the focus of cognitive ecology, will enable us to further analyse the evolution and adaptive value of species recognition abilities.  
  Address (up) Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16160818 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2484  
Permanent link to this record
 

 
Author Carroll, J.; Murphy, C.J.; Neitz, M.; Hoeve, J.N.; Neitz, J. doi  openurl
  Title Photopigment basis for dichromatic color vision in the horse Type Journal Article
  Year 2001 Publication Journal of Vision Abbreviated Journal J Vis  
  Volume 1 Issue 2 Pages 80-87  
  Keywords Adaptation, Physiological; Animals; Color Perception/*physiology; Cones (Retina)/chemistry/*physiology; Electroretinography; Horses/*physiology; Photic Stimulation; Phototransduction/physiology; Retinal Pigments/analysis/*physiology; Visual Perception/physiology  
  Abstract Horses, like other ungulates, are active in the day, at dusk, dawn, and night; and, they have eyes designed to have both high sensitivity for vision in dim light and good visual acuity under higher light levels (Walls, 1942). Typically, daytime activity is associated with the presence of multiple cone classes and color-vision capacity (Jacobs, 1993). Previous studies in other ungulates, such as pigs, goats, cows, sheep and deer, have shown that they have two spectrally different cone types, and hence, at least the photopigment basis for dichromatic color vision (Neitz & Jacobs, 1989; Jacobs, Deegan II, Neitz, Murphy, Miller, & Marchinton, 1994; Jacobs, Deegan II, & Neitz, 1998). Here, electroretinogram flicker photometry was used to measure the spectral sensitivities of the cones in the domestic horse (Equus caballus). Two distinct spectral mechanisms were identified and are consistent with the presence of a short-wavelength-sensitive (S) and a middle-to-long-wavelength-sensitive (M/L) cone. The spectral sensitivity of the S cone was estimated to have a peak of 428 nm, while the M/L cone had a peak of 539 nm. These two cone types would provide the basis for dichromatic color vision consistent with recent results from behavioral testing of horses (Macuda & Timney, 1999; Macuda & Timney, 2000; Timney & Macuda, 2001). The spectral peak of the M/L cone photopigment measured here, in vivo, is similar to that obtained when the gene was sequenced, cloned, and expressed in vitro (Yokoyama & Radlwimmer, 1999). Of the ungulates that have been studied to date, all have the photopigment basis for dichromatic color vision; however, they differ considerably from one another in the spectral tuning of their cone pigments. These differences may represent adaptations to the different visual requirements of different species.  
  Address (up) Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-7362 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12678603 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4060  
Permanent link to this record
 

 
Author Vlamings, P.H.J.M.; Uher, J.; Call, J. doi  openurl
  Title How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, and Gorilla gorilla) perform on the reversed contingency task: the effects of food quantity and food visibility Type Journal Article
  Year 2006 Publication Journal of Experimental Psychology. Animal Behavior Processes Abbreviated Journal J Exp Psychol Anim Behav Process  
  Volume 32 Issue 1 Pages 60-70  
  Keywords Age Factors; Animals; Behavior, Animal/physiology; Cognition; Conditioning (Psychology); Female; *Food; Gorilla gorilla/*psychology; *Learning; Male; Pan paniscus/*psychology; Pan troglodytes/*psychology; Pongo pygmaeus/*psychology; *Visual Perception  
  Abstract S. T. Boysen and G. G. Berntson (1995) found that chimpanzees performed poorly on a reversed contingency task in which they had to point to the smaller of 2 food quantities to acquire the larger quantity. The authors compared the performance of 4 great ape species (Pan troglodytes, Pongo pygmaeus, Pan paniscus, and Gorilla gorilla) on the reversed contingency task while manipulating food quantity (0-4 or 1-4) and food visibility (visible pairs or covered pairs). Results showed no systematic species differences but large individual differences. Some individuals of each species were able to solve the reversed contingency task. Both quantity and visibility of the food items had a significant effect on performance. Subjects performed better when the disparity between quantities was smaller and the quantities were not directly visible.  
  Address (up) Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. p.vlamings@psychology.unimaas.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-7403 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16435965 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2765  
Permanent link to this record
 

 
Author Sovrano, V.A.; Bisazza, A.; Vallortigara, G. doi  openurl
  Title How fish do geometry in large and in small spaces Type Journal Article
  Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 10 Issue 1 Pages 47-54  
  Keywords Animals; *Association Learning; Color Perception; Cues; *Discrimination Learning; *Distance Perception; *Fishes; Male; Pattern Recognition, Visual; Social Environment; *Space Perception; Visual Perception  
  Abstract It has been shown that children and non-human animals seem to integrate geometric and featural information to different extents in order to reorient themselves in environments of different spatial scales. We trained fish (redtail splitfins, Xenotoca eiseni) to reorient to find a corner in a rectangular tank with a distinctive featural cue (a blue wall). Then we tested fish after displacement of the feature on another adjacent wall. In the large enclosure, fish chose the two corners with the feature, and also tended to choose among them the one that maintained the correct arrangement of the featural cue with respect to geometric sense (i.e. left-right position). In contrast, in the small enclosure, fish chose both the two corners with the features and the corner, without any feature, that maintained the correct metric arrangement of the walls with respect to geometric sense. Possible reasons for species differences in the use of geometric and non-geometric information are discussed.  
  Address (up) Department of General Psychology, University of Padua, Via Venezia, 8, 35131, Padova, Italy. valeriaanna.sovrano@unipd.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16794851 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2462  
Permanent link to this record
 

 
Author Loveland, K.A. doi  openurl
  Title Self-recognition in the bottlenose dolphin: ecological considerations Type Journal Article
  Year 1995 Publication Consciousness and Cognition Abbreviated Journal Conscious Cogn  
  Volume 4 Issue 2 Pages 254-257  
  Keywords Animals; Attention; *Awareness; Body Image; Dolphins/*psychology; Exploratory Behavior; Female; Male; *Self Concept; *Social Environment; Species Specificity; Television; *Visual Perception  
  Abstract  
  Address (up) Department of Psychiatry and Behavioral Sciences, University of Texas Medical School, Houston 77025, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1053-8100 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:8521267 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print