|   | 
Details
   web
Records
Author Summerley, H.L.; Thomason, J.J.; Bignell, W.W.
Title Effect of rider and riding style on deformation of the front hoof wall in warmblood horses Type Journal Article
Year 1998 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 26 Pages 81-85
Keywords Animals; Female; Gait/*physiology; Hoof and Claw/*physiology; Horses/*physiology; Male; Videotape Recording; Weight-Bearing
Abstract A rider modifies the weight distribution and dynamic balance of the horse. But what effect does a rider have on the mechanical behaviour of the hoof during each stance phase? Does riding style have any effect on this behaviour? We attempted to answer these questions using strains recorded from 5 rosette strain gauges glued to the surface of the front hooves of 4 Warmblood horses. Comparisons were made between strains with and without a rider, and when the rider was sitting, rising at a trot, or in a forward seated position. The change in strains from trot to lead or nonlead at a canter, and the effect of turning were also studied. Changing lead at a canter had as least as much effect on strain magnitudes as did turning; strains were up to 43% higher for the nonlead foot, but with little redistribution. Perhaps surprisingly, strains were significantly lower on the quarters by up to 30% with a rider than without, with a 10% increase or decrease at the toe, depending on the individual. Riding style changed strain magnitudes by up to 20% and also caused strain redistribution: strains were higher medially for sitting, and laterally for forward seat, with strains for a rising trot being more evenly distributed and intermediate in magnitude. Studying the range of, and causes of variation in hoof wall strain gives baseline data aimed, in the long term, at providing a biomechanical definition of hoof balance.
Address (up) Department of Biomedical Sciences, University of Guelph, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9932097 Approved no
Call Number refbase @ user @ Serial 1934
Permanent link to this record
 

 
Author Morales, J.L.; Manchado, M.; Vivo, J.; Galisteo, A.M.; Aguera, E.; Miro, F.
Title Angular kinematic patterns of limbs in elite and riding horses at trot Type Journal Article
Year 1998 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 30 Issue 6 Pages 528-533
Keywords Animals; Biomechanics; Breeding; Extremities/*physiology; Gait/*physiology; Horses/*physiology; Image Processing, Computer-Assisted; Joints/*physiology; Male; Video Recording
Abstract Normal speed videography was used to determine the angular parameters of 28 Spanish Thoroughbreds at trot. Horses were divided into 3 groups: Group UT, comprising 9 animals (provided by the VII National Stud, Cordoba, Spain) which had undergone no specific training programme and which were hand led at the trot; Group T, formed by 19 horses considered to be highly bred and trained, and which were also hand led; and Group RT, comprising the same horses as the latter group but this time trotted by a rider. Each animal was filmed 6 times from the right-hand side, using a Hi8 (25 Hz) video camera. Angular parameters for fore- and hindlimb joints were measured in each stride from computer-grabbed frames and entered into a spreadsheet for calculation; parameters included maximum and minimum angles, range of motion, and angles at landing, lift off and maximum hoof height; the times at which maximum angle, minimum angle, lift off and maximum hoof height occurred were calculated as percentages of total stride duration. Stride velocity (mean [s.d.]) was 4.01 (0.62), 3.60 (0.34) and 3.07 (0.36) m/s for Groups UT, T and RT, respectively. Data were then compared between Groups UT-T and Groups T-RT. Compared with Group UT, horses from Group T featured a shorter stance percentage (P<0.001) in both fore- and hindlimbs. The range of motion in forelimbs was smaller (P<0.05), due to lower retraction (P<0.001); moreover, maximum retraction appeared earlier (P<0.05). Greater scapular inclination was in evidence (P<0.05) and the shoulder joint extended further (P<0.05). Fore- and hind fetlock joints revealed a relatively shorter hyperextension period during the stance phase (P<0.01). Compared with Group T, horses from Group RT had a longer stance percentage, with belated maximum retraction of the fore- and hindlimbs. The range of movement in scapular inclination was greater (P<0.05), due to a smaller minimum angle (P<0.01), and the shoulder joint flexed more (P<0.05). The elbow joint extended more and for longer during the stance phase. Initial extension of the hip joint (P<0.05) and tarsus (P<0.001) lasted longer. The carpal and fore and hind fetlock joints recorded relatively longer hyperextension times, in addition to greater hyperextension during the stance phase. The results from the present study suggest that rider-effect must be taken in consideration when well gaited horses are selected for dressage purposes.
Address (up) Department of Compared Anatomy and Pathology, University of Cordoba, Veterinary Faculty, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:9844972 Approved no
Call Number Equine Behaviour @ team @ Serial 3734
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Effect of early training on the jumping technique of horses Type Journal Article
Year 2005 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 66 Issue 3 Pages 418-424
Keywords Age Factors; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/growth & development/*physiology; Locomotion/*physiology; Models, Biological; Physical Conditioning, Animal/*methods
Abstract OBJECTIVE: To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. ANIMALS: 40 Dutch Warmblood horses. PROCEDURE: The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. RESULTS: Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. CONCLUSIONS AND CLINICAL RELEVANCE: Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.
Address (up) Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:15822585 Approved no
Call Number Equine Behaviour @ team @ Serial 4037
Permanent link to this record
 

 
Author Santamaria, S.; Bobbert, M.E.; Back, W.; Barneveld, A.; van Weeren, P.R.
Title Variation in free jumping technique within and among horses with little experience in show jumping Type Journal Article
Year 2004 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 65 Issue 7 Pages 938-944
Keywords *Acceleration; Analysis of Variance; Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Models, Biological; Video Recording
Abstract OBJECTIVE: To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among horses. ANIMALS: Fifteen 4-year-old Dutch Warmblood horses. PROCEDURE: The horses were raised under standardized conditions and trained in accordance with a fixed protocol for a short period. Subsequently, horses were analyzed kinematically during free jumping over a fence with a height of 1.05 m. RESULTS: Within-horse variation in all variables that quantified jumping technique was smaller than variation among horses. However, some horses had less variation than others. Height of the center of gravity (CG) at the apex of the jump ranged from 1.80 to 2.01 m among horses; this variation could be explained by the variation in vertical velocity of the CG at takeoff (r, 0.78). Horses that had higher vertical velocity at takeoff left the ground and landed again farther from the fence, had shorter push-off phases for the forelimbs and hind limbs, and generated greater vertical acceleration of the CG primarily during the hind limb push-off. However, all horses cleared the fence successfully, independent of jumping technique. CONCLUSIONS AND CLINICAL RELEVANCE: Each horse had its own jumping technique. Differences among techniques were characterized by variations in the vertical velocity of the CG at takeoff. It must be determined whether jumping performance later in life can be predicted from observing free jumps of young horses.
Address (up) Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 12, NL-3584 CM Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:15281652 Approved no
Call Number Equine Behaviour @ team @ Serial 3772
Permanent link to this record
 

 
Author Santamaria, S.; Back, W.; van Weeren, P.R.; Knaap, J.; Barneveld, A.
Title Jumping characteristics of naive foals: lead changes and description of temporal and linear parameters Type Journal Article
Year 2002 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 34 Pages 302-307
Keywords Animals; Animals, Newborn/*physiology; Biomechanics; Female; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Male
Abstract The selection of foals as future showjumpers remains a subjective process based on qualitative parameters; and hence, frequently suffers from disparity in the criteria used by experts in the field. A detailed biomechanical description of foals while jumping would be most helpful in providing a better basis for the accurate assessment of their future athletic ability. The Qualisys Pro Reflex system was used to capture 3-dimensional kinematics of 41 Dutch Warmblood foals age 6 months free jumping a vertical fence, preceded by a cross pole fence. The left lead was the most preferred lead for both the fore- and hindlimbs, from the landing following the cross poles to the first move-off stride after clearing the vertical fence. The foals displayed a high incidence of rotary gallop during both the jump stride (divided into take-off, jump suspension and landing) and the first move-off stride, while change of lead was frequently observed during jump suspension. At the take-off side of the fence, the trailing forelimb in the last approach stride was placed furthest from the fence, whereas the trailing hindlimb at take-off was placed closest (P<0.05). At the landing side, the trailing forelimb was the closest and the leading hindlimb of the move-off stride 1 was the furthest (P<0.05). The trailing forelimb in the approach stride 1 had a significantly longer stance phase duration than the leading forelimb. At landing, the leading forelimb stance phase lasted longer than that of the trailing forelimb (P<0.05). The hindlimbs did not differ in their stance phase duration at take-off. The height reached by the hooves above the fence top was significantly greater in the hind limbs (P<0.05). In addition, the hindlimbs (97.1 +/- 2.6%) shortened more than the forelimbs (92.6 +/- 5.7%) (P<0.05). It is concluded that the overall jumping technique of foals is similar to that reported in literature for mature horses. If the patterns are consistent throughout the rearing period, the quantitative analysis of the kinematics of free jumping foals may provide a valid quantitative basis for early selection.
Address (up) Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:12405705 Approved no
Call Number Equine Behaviour @ team @ Serial 3784
Permanent link to this record
 

 
Author Clayton, H.M.; Lanovaz, J.L.; Schamhardt, H.C.; van Wessum, R.
Title The effects of a rider's mass on ground reaction forces and fetlock kinematics at the trot Type Journal Article
Year 1999 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume 30 Issue Pages 218-221
Keywords Animals; Body Weight; Computer Simulation; Gait/*physiology; Horses/*physiology; Physical Conditioning, Animal/*physiology; Stress, Mechanical; Weight-Bearing/*physiology
Abstract Ground reaction force (GRF) measurements are often normalised to body mass to facilitate inter-individual comparisons. The objective of this study was to explore the effect of a rider on the GRFs and fetlock joint kinematics of trotting horses. The subjects were 5 dressage-trained horses and 3 experienced dressage riders. Ground reaction force measurements and sagittal view videotapes were recorded as the horses trotted at the same velocity in hand (3.49 +/- 0.52 m/s) and with a rider (3.49 +/- 0.46 m/s). Data were time-normalised to stance duration. Ground reaction force measurements were expressed in absolute terms and normalised to the system mass (horse or horse plus rider). All the horses showed changes in the same direction when comparing the ridden condition with the in-hand condition. There was an increase in the absolute peak vertical GRFs of the fore- and hindlimbs with a rider. However, the mass-normalised peak vertical GRFs were lower for the ridden condition, with the peak occurring later in the forelimbs and earlier in the hindlimbs compared with the inhand condition. Maximal fetlock angle and its time of occurrence were similar for the 2 conditions, but the fore fetlock joint was more extended during the later part of the stance phase in ridden horses. The presence of a rider appeared to affect the GRFs and fetlock joint kinematics differently in the fore- and hindlimbs, and the ridden horse did not seem to be equivalent to a proportionately larger horse. This should be considered when normalising for body mass in studies comparing horses in hand and ridden horses.
Address (up) Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824-1314, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:10659255 Approved no
Call Number Equine Behaviour @ team @ Serial 3733
Permanent link to this record
 

 
Author Powers, P.; Harrison, A.
Title Effects of the rider on the linear kinematics of jumping horses Type Journal Article
Year 2002 Publication Sports Biomechanics / International Society of Biomechanics in Sports Abbreviated Journal Sports Biomech
Volume 1 Issue 2 Pages 135-146
Keywords Animals; Behavior, Animal/*physiology; Biomechanics; Communication; Exertion/*physiology; Gait/*physiology; Horses/*physiology; Humans; Locomotion/*physiology; Posture/*physiology; Task Performance and Analysis; Video Recording; Weight-Bearing/*physiology
Abstract This study examined the effects of the rider on the linear projectile kinematics of show-jumping horses. SVHS video recordings (50 Hz) of eight horses jumping a vertical fence 1 m high were used for the study. Horses jumped the fence under two conditions: loose (no rider or tack) and ridden. Recordings were digitised using Peak Motus. After digitising the sequences, each rider's digitised data were removed from the ridden horse data so that three conditions were examined: loose, ridden (including the rider's data) and riderless (rider's data removed). Repeated measures ANOVA revealed significant differences between ridden and loose conditions for CG height at take-off (p < 0.001), CG distance to the fence at take-off (p = 0.001), maximum CG during the suspension phase (p < 0.001), CG position over the centre of the fence (p < 0.001), CG height at landing (p < 0.001), and vertical velocity at take-off (p < 0.001). The results indicated that the rider's effect on jumping horses was primarily due to behavioural changes in the horses motion (resulting from the rider's instruction), rather than inertial effects (due to the positioning of the rider on the horse). These findings have implications for the coaching of riders and horses.
Address (up) Department of PE and Sports Sciences, University of Limerick, Limerick, Ireland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-3141 ISBN Medium
Area Expedition Conference
Notes PMID:14658371 Approved no
Call Number Serial 1904
Permanent link to this record
 

 
Author Meershoek, L.S.; Roepstorff, L.; Schamhardt, H.C.; Johnston, C.; Bobbert, M.F.
Title Joint moments in the distal forelimbs of jumping horses during landing Type Journal Article
Year 2001 Publication Equine Veterinary Journal Abbreviated Journal Equine Vet J
Volume 33 Issue 4 Pages 410-415
Keywords Animals; Biomechanics; Forelimb/physiology; Gait/*physiology; Horses/*physiology; Joints/*physiology; Physical Conditioning, Animal; Tendons/*physiology; Weight-Bearing
Abstract Tendon injuries are an important problem in athletic horses and are probably caused by excessive loading of the tendons during demanding activities. As a first step towards understanding these injuries, the tendon loading was quantified during jump landings. Kinematics and ground reaction forces were collected from the leading and trailing forelimbs of 6 experienced jumping horses. Joint moments were calculated using inverse dynamic analysis. It was found that the variation of movement and loading patterns was small, both within and between horses. The peak flexor joint moments in the coffin and fetlock joints were larger in the trailing limb (-0.62 and -2.44 Nm/kg bwt, respectively) than in the leading limb (-0.44 and -1.93 Nm/kg bwt, respectively) and exceeded literature values for trot by 82 and 45%. Additionally, there was an extensor coffin joint moment in the first half of the stance phase of the leading limb (peak value 0.26+/-0.18 Nm/kg bwt). From these results, it was concluded that the loading of the flexor tendons during landing was higher in the trailing than in the leading limb and that there was an unexpected loading of the extensor tendon in the leading limb.
Address (up) Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0425-1644 ISBN Medium
Area Expedition Conference
Notes PMID:11469776 Approved no
Call Number Equine Behaviour @ team @ Serial 3787
Permanent link to this record
 

 
Author Clayton, H.M.
Title Comparison of the stride kinematics of the collected, medium, and extended walks in horses Type Journal Article
Year 1995 Publication American Journal of Veterinary Research Abbreviated Journal Am J Vet Res
Volume 56 Issue 7 Pages 849-852
Keywords Analysis of Variance; Animals; *Gait; Horses/*physiology; *Locomotion; Motion Pictures; Physical Conditioning, Animal; Walking
Abstract Six horses, highly trained for dressage competition, were used to study the stride kinematics of the walk, and to compare the kinematics of the collected, medium, and extended walks. Horses were filmed in a sagittal plane at a rate of 150 frames/s; temporal, linear, and angular data were extracted from the films. Results of ANOVA and Duncan's multiple range test indicated that the speed of the collected walk (1.37 m/s) was significantly (P < 0.01) slower than that of the medium (1.73 m/s) and extended (1.82 m/s) walks, values for which were not significantly different from each other. The increase in speed was associated with a significant increase in stride length, from 157 cm in the collected walk to 193 cm in the extended walk. This was a result of an increase in the over-tracking distance, whereas there was no significant difference in the distance between lateral placements of the limbs. Stride duration decreased (P < 0.01) from the collected walk (1,159 ms) to the extended walk (1,064 ms). Angles of the metacarpal and metatarsal segments, measured on the palmar/ plantar aspect, were higher at impact and lower at lift off in the collected than in the extended walk (P < 0.01). This indicated greater range of angular motion of this segment during the stance phase in the extended walk. Only 1 of the 6 horses had a regular 4-beat rhythm of the footfalls, with equal time elapsing between the lateral and diagonal footfalls.
Address (up) Department of Veterinary Anatomy, Western College of Veterinary Medicine, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9645 ISBN Medium
Area Expedition Conference
Notes PMID:7574149 Approved no
Call Number Equine Behaviour @ team @ Serial 3743
Permanent link to this record
 

 
Author Burns, T.E.; Clayton, H.M.
Title Comparison of the temporal kinematics of the canter pirouette and collected canter Type Journal Article
Year 1997 Publication Equine Veterinary Journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 23 Pages 58-61
Keywords Animals; Forelimb/physiology; Gait/*physiology; Hindlimb/physiology; Horses/*physiology; Locomotion/*physiology; Movement/physiology; Time Factors; Videotape Recording; Walking/physiology
Abstract The objectives were to compare the temporal characteristics of canter pirouette strides with collected canter strides in elite dressage horses, and to determine whether the stride kinematics of the canter pirouettes fulfilled the requirements specified in the Federation Equestre Internationale Rules for Dressage Events. Eleven horses were videotaped (60 fields/s) during the individual medal competition at the 1992 Olympic Games. Temporal variables were extracted from the videotapes using standard methods. Two strides were analysed on each of the left and right leads and these were pooled to give mean values for the collected canter and the pirouettes. The pirouettes were completed in 4-9 strides, (mean of 6.4). In the collected canter strides, mean duration of the suspension was 0.013 s. There was no suspension in any of the pirouette strides, instead the stance phases of the leading forelimb and trailing hindlimb overlapped by a mean of 0.163 s. In 9 horses the trailing forelimb contacted the ground before the diagonal leading hindlimb in the collected canter, whereas in the pirouettes the leading hindlimb always made contact before the trailing forelimb (mean dissociation 0.164 s), giving the strides a distinct 4 beat rhythm. Due to increases in advanced placement between the diagonal limb pair and between the 2 forelimbs, the stride duration was longer in the pirouette (0.879 s) than the collected canter (0.629 s). It is concluded that the canter pirouette strides did not maintain the rhythm and timing of the the collected canter strides in any of the 11 horses.
Address (up) Department of Veterinary Anatomy, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9354291 Approved no
Call Number Equine Behaviour @ team @ Serial 3737
Permanent link to this record