|   | 
Details
   web
Records
Author Dunbar, R.I.M.; McAdam, M.R.; O'connell, S.
Title Mental rehearsal in great apes (Pan troglodytes and Pongo pygmaeus) and children Type Journal Article
Year 2005 Publication Behavioural Processes Abbreviated Journal Behav. Process.
Volume 69 Issue 3 Pages 323-330
Keywords Algorithms; Animals; Child; Child, Preschool; Food; Frontal Lobe/anatomy & histology/physiology; Humans; *Imagination; Pan troglodytes; Pongo pygmaeus; Problem Solving/*physiology; Psychomotor Performance/physiology; Reward
Abstract The ability to rehearse possible future courses of action in the mind is an important feature of advanced social cognition in humans, and the “social brain” hypothesis implies that it might also be a feature of primate social cognition. We tested two chimpanzees, six orangutans and 63 children aged 3-7 years on a set of four puzzle boxes, half of which were presented with an opportunity to observe the box before being allowed to open it (“prior view”), the others being given without an opportunity to examine the boxes before handling them (“no prior view”). When learning effects are partialled out, puzzle boxes in the “prior view” condition were opened significantly faster than boxes given in the “no prior view” condition by the children, but not by either of the great apes. The three species differ significantly in the speed with which they opened boxes in the “no prior view” condition. The three species' performance on this task was a function of relative frontal lobe volume, suggesting that it may be possible to identify quantitative neuropsychological differences between species.
Address (up) Evolutionary Psychology Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK. rimd@liv.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes PMID:15896530 Approved no
Call Number Serial 2097
Permanent link to this record
 

 
Author Shultz, S.; Dunbar, R.I.M.
Title Both social and ecological factors predict ungulate brain size Type Journal Article
Year 2006 Publication Proceedings. Biological Sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 273 Issue 1583 Pages 207-215
Keywords Animals; Artiodactyla/*anatomy & histology/*physiology; Brain/*anatomy & histology/physiology; *Ecosystem; Organ Size; Perissodactyla/*anatomy & histology/*physiology; *Social Behavior
Abstract Among mammals, the members of some Orders have relatively large brains. Alternative explanations for this have emphasized either social or ecological selection pressures favouring greater information-processing capacities, including large group size, greater foraging efficiency, higher innovation rates, better invasion success and complex problem solving. However, the focal taxa for these analyses (primates, carnivores and birds) often show both varied ecological competence and social complexity. Here, we focus on the specific relationship between social complexity and brain size in ungulates, a group with relatively simple patterns of resource use, but extremely varied social behaviours. The statistical approach we used, phylogenetic generalized least squares, showed that relative brain size was independently associated with sociality and social complexity as well as with habitat use, while relative neocortex size is associated with social but not ecological factors. A simple index of sociality was a better predictor of both total brain and neocortex size than group size, which may indicate that the cognitive demands of sociality depend on the nature of social relationships as well as the total number of individuals in a group.
Address (up) School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK. susanne.shultz@liv.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:16555789 Approved no
Call Number Serial 2098
Permanent link to this record
 

 
Author Zhou, W.-X.; Sornette, D.; Hill, R.A.; Dunbar, R.I.M.
Title Discrete hierarchical organization of social group sizes Type Journal Article
Year 2005 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 272 Issue 1561 Pages 439-444
Keywords Anthropology, Cultural; *Group Structure; Humans; *Models, Biological; *Social Behavior; *Social Environment
Abstract The 'social brain hypothesis' for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3-5, 9-15, 30-45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.
Address (up) State Key Laboratory of Chemical Reaction Engineering, East China University of Science and Technology, Shanghai 200237, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:15734699 Approved no
Call Number refbase @ user @ Serial 549
Permanent link to this record