|   | 
Details
   web
Records
Author Hampton, R.R.; Shettleworth, S.J.
Title Hippocampal lesions impair memory for location but not color in passerine birds Type Journal Article
Year 1996 Publication Behavioral neuroscience Abbreviated Journal Behav Neurosci
Volume 110 Issue 4 Pages 831-835
Keywords Animals; Appetitive Behavior/physiology; Birds/*physiology; Brain Mapping; Color Perception/*physiology; Discrimination Learning/physiology; Hippocampus/*physiology; Long-Term Potentiation/physiology; Mental Recall/*physiology; Orientation/*physiology; Species Specificity
Abstract (up) The effects of hippocampal complex lesions on memory for location and color were assessed in black-capped chickadees (Parus atricapillus) and dark-eyed juncos (Junco hyemalis) in operant tests of matching to sample. Before surgery, most birds were more accurate on tests of memory for location than on tests of memory for color. Damage to the hippocampal complex caused a decline in memory for location, whereas memory for color was not affected in the same birds. This dissociation indicates that the avian hippocampus plays an important role in spatial cognition and suggests that this brain structure may play no role in working memory generally.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:8864273 Approved no
Call Number refbase @ user @ Serial 376
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Reinforcement and the organization of behavior in golden hamsters: Pavlovian conditioning with food and shock unconditioned stimuli Type Journal Article
Year 1978 Publication Journal of experimental psychology. Animal behavior processes Abbreviated Journal J Exp Psychol Anim Behav Process
Volume 4 Issue 2 Pages 152-169
Keywords Acoustic Stimulation; Animals; *Behavior, Animal; *Conditioning, Classical; Conditioning, Operant; Cricetinae; *Electroshock; Female; *Food; Male; Punishment; *Reinforcement (Psychology); Reinforcement Schedule
Abstract (up) The effects of Pavlovian conditioned stimuli (CSs) for food or shock on a variety of behaviors of golden hamsters were observed in three experiments. The aim was to see whether previously reported differences among the behaviors produced by food reinforcement and punishment procedures could be accounted for by differential effects of Pavlovian conditioning on the behaviors. There was some correspondence between the behaviors observed to the CSs and the previously reported effects of instrumental training. However, the Pavlovian conditioned responses (CRs) alone would not have predicted the effects of instrumental training. Moreover, CRs depended to some extent on the context in which training and testing occurred. These findings, together with others in the literature, suggest that the results of Pavlovian conditioning procedures may not unambiguously predict what system of behaviors will be most readily modified by instrumental training with a given reinforcer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0097-7403 ISBN Medium
Area Expedition Conference
Notes PMID:670890 Approved no
Call Number refbase @ user @ Serial 387
Permanent link to this record
 

 
Author Sutton, J.E.; Shettleworth, S.J.
Title Internal sense of direction and landmark use in pigeons (Columba livia) Type Journal Article
Year 2005 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 119 Issue 3 Pages 273-284
Keywords Animals; *Columbidae; Conflict (Psychology); *Cues; Discrimination Learning; Homing Behavior; *Intuition; *Orientation; *Space Perception; Transfer (Psychology); *Visual Perception
Abstract (up) The relative importance of an internal sense of direction based on inertial cues and landmark piloting for small-scale navigation by White King pigeons (Columba livia) was investigated in an arena search task. Two groups of pigeons differed in whether they had access to visual cues outside the arena. In Experiment 1, pigeons were given experience with 2 different entrances and all pigeons transferred accurate searching to novel entrances. Explicit disorientation before entering did not affect accuracy. In Experiments 2-4, landmarks and inertial cues were put in conflict or tested 1 at a time. Pigeons tended to follow the landmarks in a conflict situation but could use an internal sense of direction to search when landmarks were unavailable.
Address Department of Psychology, University of Toronto, ON, Canada. jsutton7@uwo.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:16131256 Approved no
Call Number refbase @ user @ Serial 360
Permanent link to this record
 

 
Author Hampton, R.R.; Sherry, D.F.; Shettleworth, S.J.; Khurgel, M.; Ivy, G.
Title Hippocampal volume and food-storing behavior are related in parids Type Journal Article
Year 1995 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 45 Issue 1 Pages 54-61
Keywords Animals; Appetitive Behavior/*physiology; Birds/*anatomy & histology; Brain Mapping; Evolution; Food Preferences/physiology; Hippocampus/*anatomy & histology; Mental Recall/*physiology; Orientation/*physiology; Predatory Behavior/physiology; Social Environment; Species Specificity
Abstract (up) The size of the hippocampus has been previously shown to reflect species differences and sex differences in reliance on spatial memory to locate ecologically important resources, such as food and mates. Black-capped chickadees (Parus atricapillus) cached more food than did either Mexican chickadees (P. sclateri) or bridled titmice (P. wollweberi) in two tests of food storing, one conducted in an aviary and another in smaller home cages. Black-capped chickadees were also found to have a larger hippocampus, relative to the size of the telencephalon, than the other two species. Differences in the frequency of food storing behavior among the three species have probably produced differences in the use of hippocampus-dependent memory and spatial information processing to recover stored food, resulting in graded selection for size of the hippocampus.
Address Department of Psychology, University of Toronto, Ontario, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:7866771 Approved no
Call Number refbase @ user @ Serial 379
Permanent link to this record
 

 
Author Shettleworth, S.J.
Title Memory and hippocampal specialization in food-storing birds: challenges for research on comparative cognition Type Journal Article
Year 2003 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 62 Issue 2 Pages 108-116
Keywords Animals; Birds/*physiology; Cognition/*physiology; Color Perception/physiology; Feeding Behavior/*physiology; Hippocampus/*physiology; Memory/*physiology; Species Specificity
Abstract (up) The three-way association among food-storing behavior, spatial memory, and hippocampal enlargement in some species of birds is widely cited as an example of a new 'cognitive ecology' or 'neuroecology.' Whether this relationship is as strong as it first appears and whether it might be evidence for an adaptive specialization of memory and hippocampus in food-storers have recently been the subject of some controversy [Bolhuis and Macphail, 2001; Macphail and Bolhuis, 2001]. These critiques are based on misconceptions about the nature of adaptive specializations in cognition, misconceptions about the uniformity of results to be expected from applying the comparative method to data from a wide range of species, and a narrow view of what kinds of cognitive adaptations are theoretically interesting. New analyses of why food-storers (black-capped chickadees, Poecile Atricapilla) respond preferentially to spatial over color cues when both are relevant in a memory task show that this reflects a relative superiority of spatial memory as compared to memory for color rather than exceptional spatial attention or spatial discrimination ability. New studies of chickadees from more or less harsh winter climates also support the adaptive specialization hypothesis and suggest that within-species comparisons may be especially valuable for unraveling details of the relationships among ecology, memory, and brain in food-storing species.
Address Department of Psychology, University of Toronto, Toronto, Ont., M5S 3G3, Canada. shettle@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:12937349 Approved no
Call Number refbase @ user @ Serial 367
Permanent link to this record
 

 
Author Jones, J.E.; Antoniadis, E.; Shettleworth, S.J.; Kamil, A.C.
Title A comparative study of geometric rule learning by nutcrackers (Nucifraga columbiana), pigeons (Columba livia), and jackdaws (Corvus monedula) Type Journal Article
Year 2002 Publication Journal of comparative psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol
Volume 116 Issue 4 Pages 350-356
Keywords Animals; Behavior, Animal/physiology; Birds; Feeding Behavior/physiology; Learning/*physiology; *Mathematics; Random Allocation; Spatial Behavior/*physiology
Abstract (up) Three avian species, a seed-caching corvid (Clark's nutcrackers; Nucifraga columbiana), a non-seed-caching corvid (jackdaws; Corvus monedula), and a non-seed-caching columbid (pigeons; Columba livia), were tested for ability to learn to find a goal halfway between 2 landmarks when distance between the landmarks varied during training. All 3 species learned, but jackdaws took much longer than either pigeons or nutcrackers. The nutcrackers searched more accurately than either pigeons or jackdaws. Both nutcrackers and pigeons showed good transfer to novel landmark arrays in which interlandmark distances were novel, but inconclusive results were obtained from jackdaws. Species differences in this spatial task appear quantitative rather than qualitative and are associated with differences in natural history rather than phylogeny.
Address School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7036 ISBN Medium
Area Expedition Conference
Notes PMID:12539930 Approved no
Call Number refbase @ user @ Serial 369
Permanent link to this record
 

 
Author Gibson, B.M.; Shettleworth, S.J.; McDonald, R.J.
Title Finding a goal on dry land and in the water: differential effects of disorientation on spatial learning Type Journal Article
Year 2001 Publication Behavioural brain research Abbreviated Journal Behav. Brain. Res.
Volume 123 Issue 1 Pages 103-111
Keywords Animals; Cues; Environment; Male; Maze Learning/*physiology; Orientation/*physiology; Rats; Rats, Long-Evans; Spatial Behavior/*physiology; Water
Abstract (up) Two previous studies, Martin et al. (J. Exp. Psychol. Anim. Behav. Process. 23 (1997) 183) and Dudchenko et al. (J. Exp. Psychol. Anim. Behav. Process. 23 (1997) 194), report that, compared to non-disoriented controls, rats disoriented before testing were disrupted in their ability to learn the location of a goal on a dry radial-arm maze task, but that both groups learned at the same rate in the Morris water maze. However, the radial-arm maze task was much more difficult than the water maze. In the current set of experiments, we examined the performance of control and disoriented rats on more comparable dry land and water maze tasks. Compared to non-disoriented rats, rats that were disoriented before testing were significantly impaired in locating a goal in a circular dry arena, but not a water tank. The results constrain theoretical explanations for the differential effects of disorientation on different spatial tasks.
Address Department of Psychology, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3. gibson@psych.utoronto.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:11377733 Approved no
Call Number refbase @ user @ Serial 372
Permanent link to this record
 

 
Author Gibson, B.M.; Juricevic, I.; Shettleworth, S.J.; Pratt, J.; Klein, R.M.
Title Looking for inhibition of return in pigeons Type Journal Article
Year 2005 Publication Learning & behavior : a Psychonomic Society publication Abbreviated Journal Learn Behav
Volume 33 Issue 3 Pages 296-308
Keywords Animals; Behavior, Animal/*physiology; Columbidae; *Inhibition (Psychology); Reinforcement (Psychology)
Abstract (up) We conducted four experiments in order to investigate whether pigeons' responses to a recently attended (i.e., recently pecked) location are inhibited. In Experiments 1 and 2, stimulus displays were similar to those used in studies of inhibition of return (IOR) with humans; responses to cued targets tended to be facilitated rather than inhibited. In Experiments 3 and 4, birds were presented with stimulus displays that mimicked clusters of small grains and were relatively localized, which should have been more appropriate for detecting IOR in pigeons. The results from these experiments again provided evidence for facilitation of responding to cued targets, rather than for IOR.
Address University of Toronto, Toronto, Ontario, Canada. bgibson@cisunix.unh.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-4494 ISBN Medium
Area Expedition Conference
Notes PMID:16396077 Approved no
Call Number refbase @ user @ Serial 359
Permanent link to this record
 

 
Author Ratcliffe, J.M.; Fenton, M.B.; Shettleworth, S.J.
Title Behavioral flexibility positively correlated with relative brain volume in predatory bats Type Journal Article
Year 2006 Publication Brain, behavior and evolution Abbreviated Journal Brain Behav Evol
Volume 67 Issue 3 Pages 165-176
Keywords Adaptation, Psychological; Animals; Behavior, Animal/*physiology; Brain/*anatomy & histology/physiology; Chiroptera/*anatomy & histology/*physiology; Organ Size; Predatory Behavior/*physiology
Abstract (up) We investigated the potential relationships between foraging strategies and relative brain and brain region volumes in predatory (animal-eating) echolocating bats. The species we considered represent the ancestral state for the order and approximately 70% of living bat species. The two dominant foraging strategies used by echolocating predatory bats are substrate-gleaning (taking prey from surfaces) and aerial hawking (taking airborne prey). We used species-specific behavioral, morphological, and ecological data to classify each of 59 predatory species as one of the following: (1) ground gleaning, (2) behaviorally flexible (i.e., known to both glean and hawk prey), (3) clutter tolerant aerial hawking, or (4) open-space aerial hawking. In analyses using both species level data and phylogenetically independent contrasts, relative brain size was larger in behaviorally flexible species. Further, relative neocortex volume was significantly reduced in bats that aerially hawk prey primarily in open spaces. Conversely, our foraging behavior index did not account for variability in hippocampus and inferior colliculus volume and we discuss these results in the context of past research.
Address Department of Zoology, University of Toronto, Toronto, Canada. jmr247@cornell.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-8977 ISBN Medium
Area Expedition Conference
Notes PMID:16415571 Approved no
Call Number refbase @ user @ Serial 358
Permanent link to this record