toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Byrne R.W. openurl 
  Title The evolution of intelligence Type Book Chapter
  Year 1994 Publication Behaviour and Evolution Abbreviated Journal  
  Volume Issue Pages 223-265  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Cambridge University Press Place of Publication Cambridge,UK Editor P.J.B. Slater and T.R. Halliday  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6566  
Permanent link to this record
 

 
Author Meriggi, A.; Dagradi, V.; Dondina, O.; Perversi, M.; Milanesi, P.; Lombardini, M.; Raviglione, S.; Repossi, A. url  doi
openurl 
  Title Short-term responses of wolf feeding habits to changes of wild and domestic ungulate abundance in Northern Italy Type Journal Article
  Year 2014 Publication Ethology Ecology & Evolution Abbreviated Journal Ethology Ecology & Evolution  
  Volume 27 Issue 4 Pages 389-411  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0394-9370 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1080/03949370.2014.986768 Approved no  
  Call Number Equine Behaviour @ team @ Serial 6688  
Permanent link to this record
 

 
Author Pérez-Barbería, F.J.; Shultz, S.; Dunbar, R.I.M.; Janis, C. doi  openurl
  Title Evidence For Coevolution Of Sociality And Relative Brain Size In Three Orders Of Mammals Type Journal Article
  Year 2007 Publication Evolution Abbreviated Journal  
  Volume 61 Issue 12 Pages 2811-2821  
  Keywords Brain size, carnivores, coevolution, primates, sociality, ungulates  
  Abstract (up) Abstract

As the brain is responsible for managing an individual's behavioral response to its environment, we should expect that large relative brain size is an evolutionary response to cognitively challenging behaviors. The “social brain hypothesis†argues that maintaining group cohesion is cognitively demanding as individuals living in groups need to be able to resolve conflicts that impact on their ability to meet resource requirements. If sociality does impose cognitive demands, we expect changes in relative brain size and sociality to be coupled over evolutionary time. In this study, we analyze data on sociality and relative brain size for 206 species of ungulates, carnivores, and primates and provide, for the first time, evidence that changes in sociality and relative brain size are closely correlated over evolutionary time for all three mammalian orders. This suggests a process of coevolution and provides support for the social brain theory. However, differences between taxonomic orders in the stability of the transition between small-brained/nonsocial and large-brained/social imply that, although sociality is cognitively demanding, sociality and relative brain size can become decoupled in some cases. Carnivores seem to have been especially prone to this.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/j.1558-5646.2007.00229.x Approved no  
  Call Number Equine Behaviour @ team @ Serial 4781  
Permanent link to this record
 

 
Author Lefebvre, L.; Reader, S.M.; Sol, D. doi  openurl
  Title Brains, Innovations and Evolution in Birds and Primates Type Journal Article
  Year 2004 Publication Brain, Behavior and Evolution Abbreviated Journal Brain. Behav. Evol.  
  Volume 63 Issue 4 Pages 233-246  
  Keywords Innovation W Brain evolution W Hyperstriatum ventrale W Neostriatum W Isocortex W Birds W Primates W Tool use W Invasion biology  
  Abstract (up) Abstract

Several comparative research programs have focusedon the cognitive, life history and ecological traits thataccount for variation in brain size. We review one ofthese programs, a program that uses the reported frequencyof behavioral innovation as an operational measureof cognition. In both birds and primates, innovationrate is positively correlated with the relative size of associationareas in the brain, the hyperstriatum ventrale andneostriatum in birds and the isocortex and striatum inprimates. Innovation rate is also positively correlatedwith the taxonomic distribution of tool use, as well asinterspecific differences in learning. Some features ofcognition have thus evolved in a remarkably similar wayin primates and at least six phyletically-independent avianlineages. In birds, innovation rate is associated withthe ability of species to deal with seasonal changes in theenvironment and to establish themselves in new regions,and it also appears to be related to the rate atwhich lineages diversify. Innovation rate provides a usefultool to quantify inter-taxon differences in cognitionand to test classic hypotheses regarding the evolution ofthe brain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4738  
Permanent link to this record
 

 
Author Rankin, D.J.; Lopez-Sepulcre, A.; Foster, K.R.; Kokko, H. url  doi
openurl 
  Title Species-level selection reduces selfishness through competitive exclusion Type Journal Article
  Year 2007 Publication Journal of Evolutionary Biology Abbreviated Journal  
  Volume 20 Issue 4 Pages 1459-1468  
  Keywords  
  Abstract (up) Abstract Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a .tragedy of the commons., where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species-level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual-level selection with ecology in two interacting species. Our model is not influenced by kin or trait-group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species-level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4225  
Permanent link to this record
 

 
Author Hofmeester, T.R.; Cromsigt, J.P.G.M.; Odden, J.; Andrén, H.; Kindberg, J.; Linnell, J.D.C. url  doi
openurl 
  Title Framing pictures: A conceptual framework to identify and correct for biases in detection probability of camera traps enabling multi-species comparison Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume Issue Pages  
  Keywords animal characteristics; detectability; environmental variables; mammal monitoring; reuse of data; trail camera  
  Abstract (up) Abstract Obtaining reliable species observations is of great importance in animal ecology and wildlife conservation. An increasing number of studies use camera traps (CTs) to study wildlife communities, and an increasing effort is made to make better use and reuse of the large amounts of data that are produced. It is in these circumstances that it becomes paramount to correct for the species- and study-specific variation in imperfect detection within CTs. We reviewed the literature and used our own experience to compile a list of factors that affect CT detection of animals. We did this within a conceptual framework of six distinct scales separating out the influences of (a) animal characteristics, (b) CT specifications, (c) CT set-up protocols, and (d) environmental variables. We identified 40 factors that can potentially influence the detection of animals by CTs at these six scales. Many of these factors were related to only a few overarching parameters. Most of the animal characteristics scale with body mass and diet type, and most environmental characteristics differ with season or latitude such that remote sensing products like NDVI could be used as a proxy index to capture this variation. Factors that influence detection at the microsite and camera scales are probably the most important in determining CT detection of animals. The type of study and specific research question will determine which factors should be corrected. Corrections can be done by directly adjusting the CT metric of interest or by using covariates in a statistical framework. Our conceptual framework can be used to design better CT studies and help when analyzing CT data. Furthermore, it provides an overview of which factors should be reported in CT studies to make them repeatable, comparable, and their data reusable. This should greatly improve the possibilities for global scale analyses of (reused) CT data.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1002/ece3.4878 Approved no  
  Call Number Equine Behaviour @ team @ Serial 6518  
Permanent link to this record
 

 
Author Lusseau, D. url  doi
openurl 
  Title Evidence for social role in a dolphin social network Type Journal Article
  Year 2007 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 21 Issue 3 Pages 357-366  
  Keywords  
  Abstract (up) Abstract  Social animals have to take into consideration the behaviour of conspecifics when making decisions to go by their daily lives. These decisions affect their fitness and there is therefore an evolutionary pressure to try making the right choices. In many instances individuals will make their own choices and the behaviour of the group will be a democratic integration of everyone’s decision. However, in some instances it can be advantageous to follow the choice of a few individuals in the group if they have more information regarding the situation that has arisen. Here I provide early evidence that decisions about shifts in activity states in a population of bottlenose dolphin follow such a decision-making process. This unshared consensus is mediated by a non-vocal signal, which can be communicated globally within the dolphin school. These signals are emitted by individuals that tend to have more information about the behaviour of potential competitors because of their position in the social network. I hypothesise that this decision-making process emerged from the social structure of the population and the need to maintain mixed-sex schools.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5154  
Permanent link to this record
 

 
Author Purvis, A. url  doi
openurl 
  Title The h index: playing the numbers game Type Journal Article
  Year 2006 Publication Trends in Ecology & Evolution Abbreviated Journal Trends. Ecol. Evol  
  Volume 21 Issue 8 Pages 422-422  
  Keywords  
  Abstract (up) Article Outline

References

The ‘h index’ was developed recently as a measure of research performance [1]: a researcher's h is the number of his or her papers that have been cited at least h times. In their thoughtful critique of the index, Kelly and Jennions [2] point out many ways in which h is no better than ‘traditional’ bibliometrics, such as total citation counts. However, there is one way in which, for researchers, it could be very much better, especially if (as Hirsch suggests [1]) it is to inform hiring and promotion decisions. The skewed nature of the distribution of citations among publications means that most researchers have several papers that nearly but not quite count. Consequently, h can be distorted much more easily than can total citation count just by finding a subtle way to cite one's own papers that are ‘bubbling under’. Incidentally, bats show broadly the same life-history allometries as other mammalian clades [3].
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5347 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5046  
Permanent link to this record
 

 
Author Rands, S.A.; Cowlishaw, G.; Pettifor, R.A.; Rowcliffe, J.M.; Johnstone, R.A. url  doi
openurl 
  Title The emergence of leaders and followers in foraging pairs when the qualities of individuals differ Type Journal Article
  Year 2008 Publication BMC Evolutionary Biology Abbreviated Journal BMC Evol Biol  
  Volume 8 Issue Pages 51  
  Keywords Animals; *Feeding Behavior; *Food Chain; *Models, Biological; *Social Dominance  
  Abstract (up) BACKGROUND: Foraging in groups offers animals a number of advantages, such as increasing their likelihood of finding food or detecting and avoiding predators. In order for a group to remain together, there has to be some degree of coordination of behaviour and movement between its members (which may in some cases be initiated by a decision-making leader, and in other cases may emerge as an underlying property of the group). For example, behavioural synchronisation is a phenomenon where animals within a group initiate and then continue to conduct identical behaviours, and has been characterised for a wide range of species. We examine how a pair of animals should behave using a state-dependent approach, and ask what conditions are likely to lead to behavioural synchronisation occurring, and whether one of the individuals is more likely to act as a leader. RESULTS: The model we describe considers how the energetic gain, metabolic requirements and predation risks faced by the individuals affect measures of their energetic state and behaviour (such as the degree of behavioural synchronisation seen within the pair, and the value to an individual of knowing the energetic state of its colleague). We explore how predictable changes in these measures are in response to changes in physiological requirements and predation risk. We also consider how these measures should change when the members of the pair are not identical in their metabolic requirements or their susceptibility to predation. We find that many of the changes seen in these measures are complex, especially when asymmetries exist between the members of the pair. CONCLUSION: Analyses are presented that demonstrate that, although these general patterns are robust, care needs to be taken when considering the effects of individual differences, as the relationship between individual differences and the resulting qualitative changes in behaviour may be complex. We discuss how these results are related to experimental observations, and how the model and its predictions could be extended.  
  Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. sean.rands@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18282297 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5126  
Permanent link to this record
 

 
Author Silk, J.; Cheney, D.; Seyfarth, R. url  doi
openurl 
  Title A practical guide to the study of social relationships Type Journal Article
  Year 2013 Publication Evolutionary Anthropology: Issues, News, and Reviews Abbreviated Journal Evol. Anthropol.  
  Volume 22 Issue 5 Pages 213-225  
  Keywords observational methods; behavioral analysis; methods; dyadic relationships; social bonds  
  Abstract (up) Behavioral ecologists have devoted considerable effort to identifying the sources of variation in individual reproductive success. Much of this work has focused on the characteristics of individuals, such as their sex and rank. However, many animals live in stable social groups and the fitness of individuals depends at least in part on the outcome of their interactions with other group members. For example, in many primate species, high dominance rank enhances access to resources and reproductive success. The ability to acquire and maintain high rank often depends on the availability and effectiveness of coalitionary support. Allies may be cultivated and coalitions may be reinforced by affiliative interactions such as grooming, food sharing, and tolerance. These findings suggest that if we want to understand the selective pressures that shape the social behavior of primates, it will be profitable to broaden our focus from the characteristics of individuals to the properties of the relationships that they form with others. The goal of this paper is to discuss a set of methods that can be used to quantify the properties of social relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6505 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5748  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print