|   | 
Details
   web
Records
Author Hirsch, B.T.
Title Costs and benefits of within-group spatial position: a feeding competition model Type Journal Article
Year 2007 Publication The Quarterly review of biology Abbreviated Journal Q Rev Biol
Volume 82 Issue 1 Pages 9-27
Keywords Animals; Competitive Behavior/*physiology; Dominance-Subordination; Feeding Behavior/*physiology/*psychology; Population Dynamics; Predatory Behavior/*physiology
Abstract (up) An animal's within-group spatial position has several important fitness consequences. Risk of predation, time spent engaging in antipredatory behavior and feeding competition can all vary with respect to spatial position. Previous research has found evidence that feeding rates are higher at the group edge in many species, but these studies have not represented the entire breadth of dietary diversity and ecological situations faced by many animals. In particular the presence of concentrated, defendable food patches can lead to increased feeding rates by dominants in the center of the group that are able to monopolize or defend these areas. To fully understand the tradeoffs of within-group spatial position in relation to a variety of factors, it is important to be able to predict where individuals should preferably position themselves in relation to feeding rates and food competition. A qualitative model is presented here to predict how food depletion time, abundance of food patches within a group, and the presence of prior knowledge of feeding sites affect the payoffs of different within-group spatial positions for dominant and subordinate animals. In general, when feeding on small abundant food items, individuals at the front edge of the group should have higher foraging success. When feeding on slowly depleted, rare food items, dominants will often have the highest feeding rates in the center of the group. Between these two extreme points of a continuum, an individual's optimal spatial position is predicted to be influenced by an additional combination of factors, such as group size, group spread, satiation rates, and the presence of producer-scrounger tactics.
Address Department of Anthropology, Stony Brook University Stony Brook, New York 11794, USA. BTHIRSCH@IC.SUNYSB.EDU
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-5770 ISBN Medium
Area Expedition Conference
Notes PMID:17354992 Approved no
Call Number refbase @ user @ Serial 803
Permanent link to this record
 

 
Author Cheng, K.
Title Generalisation: mechanistic and functional explanations Type Journal Article
Year 2002 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 5 Issue 1 Pages 33-40
Keywords Adaptation, Physiological; Animals; Bees/*physiology; Cognition; Evolution; Models, Psychological
Abstract (up) An overview of mechanistic and functional accounts of stimulus generalisation is given. Mechanistic accounts rely on the process of spreading activation across units representing stimuli. Different models implement the spread in different ways, ranging from diffusion to connectionist networks. A functional account proposed by Shepard analyses the probabilistic structure of the world for invariants. A universal law based on one such invariant claims that under a suitable scaling of the stimulus dimension, generalisation gradients should be approximately exponential in shape. Data from both vertebrates and invertebrates so far uphold Shepard's law. Some data on spatial generalisation in honeybees are presented to illustrate how Shepard's law can be used to determine the metric for combining discrepancies in different stimulus dimensions. The phenomenon of peak shift is discussed. Comments on mechanistic and functional approaches to generalisation are given.
Address Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia. kcheng@axon.bhs.mq.edu.au
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:11957400 Approved no
Call Number Equine Behaviour @ team @ Serial 2612
Permanent link to this record
 

 
Author Trim, C.M.; Moore, J.N.; Clark, E.S.
Title Renal effects of dopamine infusion in conscious horses Type Journal Article
Year 1989 Publication Equine veterinary journal. Supplement Abbreviated Journal Equine Vet J Suppl
Volume Issue 7 Pages 124-128
Keywords Animals; Blood Pressure/drug effects/physiology; Consciousness/*physiology; Creatinine/blood; Dopamine/administration & dosage/*pharmacology; Dose-Response Relationship, Drug; Female; Heart Rate/drug effects/physiology; Horses/*physiology; Infusions, Intravenous/veterinary; Kidney/blood supply/*drug effects/physiology; Osmolar Concentration; Potassium/blood; Random Allocation; Regional Blood Flow/drug effects/physiology; Renal Artery/drug effects/physiology/ultrasonography; Sodium/blood; Time Factors; Ultrasonography/methods/veterinary; Urination/physiology
Abstract (up) An ultrasonic flow probe was implanted around a branch of the left renal artery in five horses. The effects of dopamine were studied in the unsedated horses 10 days after surgery. Three experiments, separated by at least two days, were performed in random order on each horse. In two experiments, dopamine was infused intravenously for 60 mins at either 2.5 and 5.0 micrograms/kg bodyweight (bwt)/min. Saline was infused for 60 mins before and after each infusion, and for 180 mins in the third experiment as a control. Renal blood flow increased during administration of dopamine at both dose rates (P = 0.0001). Urine volume increased (P = 0.055), and osmolality decreased (P < 0.05), with infusion of dopamine at 5.0 micrograms/kg bwt/min. Arterial blood pressure and heart rate were not significantly affected. Fractional excretions of sodium and potassium were not significantly changed with dopamine infusion. The higher dopamine dose rate was accompanied by dysrhythmias in some horses.
Address Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens 30602, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes PMID:9118094 Approved no
Call Number refbase @ user @ Serial 99
Permanent link to this record
 

 
Author Peake, T.M.; Terry, A.M.; McGregor, P.K.; Dabelsteen, T.
Title Male great tits eavesdrop on simulated male-to-male vocal interactions Type Journal Article
Year 2001 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 268 Issue 1472 Pages 1183-1187
Keywords Animals; Male; Songbirds/*physiology; *Vocalization, Animal
Abstract (up) Animal communication generally occurs in the environment of a network of several potential signallers and receivers. Within a network environment, it is possible to gain relative information about conspecifics by eavesdropping on signalling interactions. We presented male great tits with the opportunity to gain such information by simulating singing interactions using two loudspeakers. Interactions were presented so that relevant information was not available in the absolute singing behaviour of either individual, only in the relative timing of their songs in the interaction as a whole. We then assayed the information extracted by focal males by subsequently introducing one of the 'interactants' (i.e. loudspeakers) into the territory of the focal male. Focal males responded with a reduced song output to males that had just 'lost' an interaction. Focal males did not respond significantly differently to 'winners' as compared with intruders recently involved in an interaction that contained no consistent information. Focal males also responded by switching song types more often when encountering males that had recently been involved in a low-intensity interaction. These results provide the clearest evidence yet that male songbirds extract information from signal interactions between conspecifics in the field.
Address Department of Animal Behaviour, Zoological Institute, Tagensvej 16, University of Copenhagen, 2200 Copenhagen N, Denmark. tmpeake@zi.ku.dk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:11375107 Approved no
Call Number refbase @ user @ Serial 712
Permanent link to this record
 

 
Author Swanson, J.C.
Title Farm animal well-being and intensive production systems Type Journal Article
Year 1995 Publication Journal of Animal Science Abbreviated Journal J. Anim Sci.
Volume 73 Issue 9 Pages 2744-2751
Keywords Animal Husbandry/legislation & jurisprudence/*standards; Animal Rights/legislation & jurisprudence/standards; Animal Welfare/legislation & jurisprudence/*standards; Animals; Animals, Domestic/*growth & development/*physiology; Breeding/legislation & jurisprudence/*standards; Cattle; Chickens; Environment; Reproduction/physiology; Sheep; Swine
Abstract (up) Animal welfare, or well-being, is a social issue with ethical, scientific, political, and aesthetic properties. Answering questions about the welfare of animals requires scientific definition, assessment, solutions, and public acceptance. With respect to the actual well-being of the animal, most issues are centered on how the animal “feels” when managed within a specific level of confinement, during special agricultural practices (e.g., tail docking, beak trimming, etc.) and handling. Questions of this nature may require exploration of animal cognition, motivation, perception, and emotional states in addition to more commonly recognized indicators of well-being. Several general approaches have emerged for solving problems concerning animal well-being in intensive production systems: environmental, genetic, and therapeutic. Environmental approaches involve modifying existing systems to accommodate specific welfare concerns or development of alternative systems. Genetic approaches involve changing the behavioral and (or) physiological nature of the animal to reduce or eliminate behaviors that are undesirable within intensive system. Therapeutic approaches of a physical (tail docking, beak trimming) and physiological (drug and nutritional therapy) nature bring both concern and promise with regard to the reduction of confinement stress. Finally, the recent focus on commodity quality assurance programs may indirectly provide benefits for animal well-being. Although research in the area of animal well-being will provide important information for better animal management, handling, care, and the physical design of intensive production systems there is still some uncertainty regarding public acceptance. The aesthetics of modern intensive production systems may have as much to do with public acceptance as with science.
Address Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8812 ISBN Medium
Area Expedition Conference
Notes PMID:8582867 Approved no
Call Number Equine Behaviour @ team @ Serial 2752
Permanent link to this record
 

 
Author Peake, T.M.; Terry, A.M.R.; McGregor, P.K.; Dabelsteen, T.
Title Do great tits assess rivals by combining direct experience with information gathered by eavesdropping? Type Journal Article
Year 2002 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proc Biol Sci
Volume 269 Issue 1503 Pages 1925-1929
Keywords Aggression; *Animal Communication; Animals; Male; Songbirds/*physiology; Territoriality; *Vocalization, Animal
Abstract (up) Animals frequently use signals that travel further than the spacing between individuals. For every intended recipient of a given signal there are likely to be many other individuals that receive information. Eavesdropping on signalling interactions between other individuals provides a relatively cost-free method of assessing future opponents or mates. Male great tits (Parus major) extract relative information from such interactions between individuals unknown to them. Here, we show that male great tits can take information gathering a stage further and obtain more information about a previously unencountered intruder, by the hitherto unknown capability of combining information gathered by eavesdropping with that derived from their own direct interaction with an individual. Prior experience with an intruder (A) was achieved by subjecting a focal male to different levels of intrusion simulated using interactive playback. This intruder (A) then took part in a simulated interaction with an unknown male (B) outside the territorial boundary of the focal males. In response to subsequent intrusion by the second male (B), focal males showed low song output in response to males that had lost to a male that the subject was able to beat. Males of known high quality, or those about which information was ambiguous, elicited a high level of song output by focal males. We discuss the implications of this finding for the evolution of communication and social behaviour.
Address Department of Animal Behaviour, Zoological Institute, Copenhagen University, Tagensvej 16, DK 2200 Copenhagen N, Denmark. tmpeake@zi.ku.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:12350255 Approved no
Call Number refbase @ user @ Serial 501
Permanent link to this record
 

 
Author Naug, D.; Arathi, H.S.
Title Sampling and decision rules used by honey bees in a foraging arena Type Journal Article
Year 2007 Publication Animal Cognition Abbreviated Journal Anim. Cogn.
Volume 10 Issue 2 Pages 117-124
Keywords Animals; Bees/*physiology; *Choice Behavior; Cooperative Behavior; *Feeding Behavior; Flight, Animal
Abstract (up) Animals must continuously choose among various available options to exploit the most profitable resource. They also need to keep themselves updated about the values of all available options, since their relative values can change quickly due to depletion or exploitation by competitors. While the sampling and decision rules by which foragers profitably exploit a flower patch have attracted a great deal of attention in theory and experiments with bumble bees, similar rules for honey bee foragers, which face similar foraging challenges, are not as well studied. By presenting foragers of the honey bee Apis cerana with choice tests in a foraging arena and recording their behavior, we investigate possible sampling and decision rules that the foragers use to choose one option over another and to track other options. We show that a large part of the sampling and decision-making process of a foraging honey bee can be explained by decomposing the choice behavior into dichotomous decision points and incorporating the cost of sampling. The results suggest that a honey bee forager, by using a few simple rules as part of a Bayesian inference process, is able to effectively deal with the complex task of successfully exploiting foraging patches that consist of dynamic and multiple options.
Address Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. dhruba@lamar.colostate.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1435-9448 ISBN Medium
Area Expedition Conference
Notes PMID:16941157 Approved no
Call Number Equine Behaviour @ team @ Serial 2441
Permanent link to this record
 

 
Author Real, L.A.
Title Animal choice behavior and the evolution of cognitive architecture Type Journal Article
Year 1991 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 253 Issue 5023 Pages 980-986
Keywords Animals; Bees/genetics/*physiology; Biomechanics; *Choice Behavior; *Cognition; *Evolution; Mathematics; Models, Genetic; Probability
Abstract (up) Animals process sensory information according to specific computational rules and, subsequently, form representations of their environments that form the basis for decisions and choices. The specific computational rules used by organisms will often be evolutionarily adaptive by generating higher probabilities of survival, reproduction, and resource acquisition. Experiments with enclosed colonies of bumblebees constrained to foraging on artificial flowers suggest that the bumblebee's cognitive architecture is designed to efficiently exploit floral resources from spatially structured environments given limits on memory and the neuronal processing of information. A non-linear relationship between the biomechanics of nectar extraction and rates of net energetic gain by individual bees may account for sensitivities to both the arithmetic mean and variance in reward distributions in flowers. Heuristic rules that lead to efficient resource exploitation may also lead to subjective misperception of likelihoods. Subjective probability formation may then be viewed as a problem in pattern recognition subject to specific sampling schemes and memory constraints.
Address Department of Biology, University of North Carolina, Chapel Hill 27599-3280
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:1887231 Approved no
Call Number Equine Behaviour @ team @ Serial 2846
Permanent link to this record
 

 
Author Pickens, C.L.; Holland, P.C.
Title Conditioning and cognition Type Journal Article
Year 2004 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal Neurosci Biobehav Rev
Volume 28 Issue 7 Pages 651-661
Keywords Animals; Association Learning/physiology; Cognition/*physiology; Conditioning (Psychology)/*physiology; Discrimination Learning/physiology; Humans; Memory; Models, Psychological; Reinforcement (Psychology); Visual Perception/physiology
Abstract (up) Animals' abilities to use internal representations of absent objects to guide adaptive behavior and acquire new information, and to represent multiple spatial, temporal, and object properties of complex events and event sequences, may underlie many aspects of human perception, memory, and symbolic thought. In this review, two classes of simple associative learning tasks that address these core cognitive capacities are discussed. The first set, including reinforcer revaluation and mediated learning procedures, address the power of Pavlovian conditioned stimuli to gain access, through learning, to representations of upcoming events. The second set of investigations concern the construction of complex stimulus representations, as illustrated in studies of contextual learning, the conjunction of explicit stimulus elements in configural learning procedures, and recent studies of episodic-like memory. The importance of identifying both cognitive process and brain system bases of performance in animal models is emphasized.
Address Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0149-7634 ISBN Medium
Area Expedition Conference
Notes PMID:15555675 Approved no
Call Number Equine Behaviour @ team @ Serial 2803
Permanent link to this record
 

 
Author Cowell, P.E.; Fitch, R.H.; Denenberg, V.H.
Title Laterality in animals: relevance to schizophrenia Type Journal Article
Year 1999 Publication Schizophrenia Bulletin Abbreviated Journal Schizophr Bull
Volume 25 Issue 1 Pages 41-62
Keywords Adult; Animals; Cognition; *Disease Models, Animal; Functional Laterality/*physiology; Humans; Language; Motor Activity/physiology; Schizophrenia/*physiopathology
Abstract (up) Anomalies in the laterality of numerous neurocognitive dimensions associated with schizophrenia have been documented, but their role in the etiology and early development of the disorder remain unclear. In the study of normative neurobehavioral organization, animal models have shed much light on the mechanisms underlying and the factors affecting adult patterns of both functional and structural asymmetry. Nonhuman species have more recently been used to investigate the environmental, genetic, and neuroendocrine factors associated with developmental language disorders in humans. We propose that the animal models used to study the basis of lateralization in normative development and language disorders such as dyslexia could be modified to investigate lateralized phenomena in schizophrenia.
Address Dept. of Human Communication Sciences, University of Sheffield, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0586-7614 ISBN Medium
Area Expedition Conference
Notes PMID:10098913 Approved no
Call Number Equine Behaviour @ team @ Serial 2827
Permanent link to this record