|   | 
Details
   web
Records
Author Vlajkoviç, S.; Nikoliç, V.; Nikoliç, A.; Milanoviç, S.žA.; Jankoviç, B.D.
Title Asymmetrical Modulation of Immune Reactivity in Left- and Right-Biased Rats After Ipsilateral Ablation of the Prefrontal, Parietal and Occipital Brain Neocortex Type Journal Article
Year 1994 Publication Int J Neurosci Abbreviated Journal International Journal of Neuroscience
Volume 78 Issue 1-2 Pages 123-134
Keywords Brain asymmetry, brain neocortex, cortical ablation, rotational behavior, rotational bias, immune responses, neuroimmunomodulation, neuroimmunology
Abstract (down) We report here on the lateralized brain immunomodulation in male Wistar rats, a phenomenon related to the rotational bias of animal and the site of cortical lesion. Rats assigned to left- and right-rotators in a cylindrical Plexiglass rotometer were subjected to the ablation of the ipsilateral prefrontal cortex (PFC), parietal cortex (PC) and occipital cortex (OC) and sensitized with bovine serum albumin (BSA) in complete Freund's adjuvant. Intact and sham-lesioned left-biased animals demonstrated increased Arthus and delayed hypersensitivity skin reactions and antibody production to BSA in comparison with corresponding right-biased animals. PFC ablation decreased humoral and cellular immune responses to BSA in left- but increased in right-biased rats. Lesioning of PC decreased humoral immune reactions in left- but increased in right-rotating animals. OC ablation failed to produce immunological abnormalities, These results suggest that immunopotentiation is associated with the left neocortex, and immunosuppression with the right neocortex. The prefrontal cortex appears to be particularly associated with immune reactions.
Address
Corporate Author Thesis
Publisher Informa Clin Med Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7454 ISBN Medium
Area Expedition Conference
Notes doi: 10.3109/00207459408986051 Approved no
Call Number Equine Behaviour @ team @ Serial 5777
Permanent link to this record
 

 
Author Cloutier, S.; Newberry, R.C.
Title Differences in skeletal and ornamental traits between laying hen cannibals, victims and bystanders Type Journal Article
Year 2002 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.
Volume 77 Issue 2 Pages 115-126
Keywords Domestic fowl; Asymmetry; Skeletal traits; Comb size; Cannibalism
Abstract (down) We compared the size of skeletal and ornamental traits, and asymmetries in bilateral skeletal traits, between victims of cannibalism, cannibals and bystanders within small groups of caged female White Leghorns at the time of cannibalistic attacks (i.e. injurious pecks resulting in bleeding). We hypothesised that victims of cannibalism have discernible morphological traits that predispose them to cannibalistic attack. We predicted that victims would have smaller skeletal traits (body length, ulna length, metatarsus length and width, toe length), lower body weight, poorer body condition, smaller combs and more asymmetrical bilateral skeletal traits than their flock mates. Contrary to our prediction, victims of cannibalistic attacks to the head/neck area (N=23) tended to have larger combs than their flock mates (Wilcoxon matched-pairs signed-ranks test, S=59, P=0.037, NS after sequential Bonferroni adjustment). Their cannibals were more asymmetrical than non-cannibalistic bystanders (metatarsus length, S=48, P=0.011 and composite asymmetry, S=62.5, P=0.002, significant after sequential Bonferroni adjustment). In agreement with our prediction, victims of cannibalistic attacks to other body parts (N=27), including the back, wings, rump, tail, cloaca, abdomen and toes, were more asymmetrical (composite asymmetry, S=78, P=0.022, significant after sequential Bonferroni adjustment) and tended to have lower body weights (S=79.5, P=0.029, NS after sequential Bonferroni adjustment) than their flock mates. Their cannibals did not differ in skeletal or ornamental traits from the non-participating bystanders. The results suggest that large combs either elicit attacks to the head and neck area or increase vulnerability to injury during such attacks. Attacks to other body parts appear to be directed towards birds with signs of weakness relative to their flock mates. In these attacks, there were no distinguishing features separating cannibals from bystanders, suggesting that the bystanders could all be potential cannibals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 2092
Permanent link to this record
 

 
Author Sakai, M.; Hishii, T.; Takeda, S.; Kohshima, S.
Title Laterality of flipper rubbing behaviour in wild bottlenose dolphins (Tursiops aduncus): Caused by asymmetry of eye use? Type Journal Article
Year 2006 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.
Volume 170 Issue 2 Pages 204-210
Keywords Indo-Pacific bottlenose dolphin; Tursiops aduncus; Social behaviour; Contact behaviour; Flipper rubbing; Behavioural laterality; Eye use; Cerebral asymmetry
Abstract (down) To determine whether wild Indo-Pacific bottlenose dolphins (Tursiops aduncus) at Mikura Island, Japan, show asymmetry of eye or flipper use during a social behaviour, we investigated the laterality of flipper-to-body (F-B) rubbing, in which one dolphin (“rubber”) rubs the body of another (“rubbee”) with its flipper. We analysed 382 episodes of video-recorded F-B rubbings performed by identified individuals (N = 111 rubbers). F-B rubbing was conducted significantly more frequently with the left flipper than with the right flipper. The duration of F-B rubbings was also significantly longer with the left flipper than with the right flipper. Of 20 dolphins, nine individuals showed significant left-side bias as the rubber in this behaviour, whereas no dolphins showed significant right-side bias. The results indicate a population-level left-side bias of the rubber in F-B rubbing. An analysis of the swimming configurations during this behaviour suggests that the asymmetry in F-B rubbing was caused not only by the laterality of the rubber, but by a preference for use of the left eye in both dolphins during this behaviour. Dolphins used the left eye significantly more frequently than the right eye during the inquisitive behaviour, while they showed no significant bias in flipper use during the object-carrying behaviour. These facts also suggest that the asymmetry of F-B rubbing is caused by the preference for using the left eye. Significant left-side bias was observed only in F-B rubbings initiated by the rubbee, in which the rubbee determined its position during this behaviour. This suggests that this behavioural asymmetry was enhanced by the rubbees choosing the left side of the rubber to ensure better and longer rubs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5347
Permanent link to this record
 

 
Author Versace, E.; Morgante, M.; Pulina, G.; Vallortigara, G.
Title Behavioural lateralization in sheep (Ovis aries) Type Journal Article
Year 2007 Publication Behavioural Brain Research Abbreviated Journal Behav. Brain. Res.
Volume 184 Issue 1 Pages 72-80
Keywords Lateralization; Laterality; Brain asymmetry; Hemisphere; Sheep; Lamb; Strength of lateralization
Abstract (down) This study investigates behavioural lateralization in sheep and lambs of different ages. A flock was tested in a task in which the animals were facing an obstacle and should avoid it on either the right or left side to rejoin flock-mates (adult sheep) or their mothers (lambs). A bias for avoiding the obstacle on the right side was observed, with lambs apparently being more lateralized than sheep. This right bias was tentatively associated with the left-hemifield laterality in familiar faces recognition which has been documented in this species. Differences between adult sheep and lambs were likely to be due to differences in social reinstatement motivation elicited by different stimuli (flock-mates or mothers) at different ages. Preferential use of the forelegs to step on a wood-board and direction of jaw movement during rumination was also tested in adult animals. No population bias nor individual-level lateralization was observed for use of the forelegs. At the same time, however, there was a large number of animals showing individual-level lateralization for the direction of jaw movement during rumination even though there was no population bias. These findings highlight that within the same species individual- and population-level lateralization can be observed in different tasks. Moreover, the results fit the general hypothesis that population-level asymmetries are more likely to occur in tasks that require social coordination among behaviourally asymmetric individuals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6701
Permanent link to this record
 

 
Author Peirce, J.W.; Leigh, A.E.; Kendrick, K.M.
Title Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep Type Journal Article
Year 2000 Publication Neuropsychologia Abbreviated Journal
Volume 38 Issue 4 Pages 475-483
Keywords Asymmetry; Hemispheric lateralisation; Chimeric; Face processing; Expertise; Internal features
Abstract (down) This study examined characteristics of visual recognition of familiar and unfamiliar faces in sheep using a 2-way discrimination task. Of particular interest were effects of lateralisation and the differential use of internal (configurational) vs external features of the stimuli. Animals were trained in a Y-maze to identify target faces from pairs, both of which were familiar (same flock as the subjects) or both of which were unfamiliar (different flock). Having been trained to identify the rewarded face a series of stimuli were presented to the sheep, designed to test for the use of each visual hemifield in the discriminations and the use of internal and external facial cues. The first experiment showed that there was a left visual hemifield (LVF) advantage in the identification of [`]hemifaces', and [`]mirrored hemifaces' and [`]chimeric' faces and that this effect was strongest with familiar faces. This represents the first evidence for visual field bias outside the primate literature. Results from the second experiment showed that, whilst both familiar and unfamiliar faces could be identified by the external features alone, only the familiar faces could be recognised by the internal features alone. Overall the results suggest separate recognition methods for socially familiar and unfamiliar faces, with the former being coded more by internal, configurational cues and showing a lateral bias to the left visual field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-3932 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5343
Permanent link to this record
 

 
Author Corballis, M.C.
Title Of mice and men – and lopsided birds Type Journal Article
Year 2008 Publication Cortex Abbreviated Journal
Volume 44 Issue 1 Pages 3-7
Keywords Cerebral asymmetry; Handedness; Evolution; Laterality
Abstract (down) The article by Zucca and Sovrano (2008, this issue) represents part of a new wave of studies of lateralization in nonhuman species. This work is often in conflict with earlier studies of human cerebral asymmetry and handedness, and the associated claim that these asymmetries are uniquely human, and perhaps even a result of the “speciation event” that led to modern humans. It is now apparent that there are close parallels between human and nonhuman asymmetries, suggesting that they have ancient roots. I argue that asymmetries must be seen in the context of a bilaterally symmetrical body plan, and that there is a balance to be struck between the adaptive advantages of symmetry and asymmetry. In human evolution, systematic asymmetries were incorporated into activities that probably are unique to our species, but the precursors of these asymmetries are increasingly evident in other species, including frogs, fish, birds, and mammals – especially primates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 4634
Permanent link to this record
 

 
Author Rogers, L.J.
Title A Matter of Degree: Strength of Brain Asymmetry and Behaviour Type
Year 2017 Publication Symmetry Abbreviated Journal Symmetry
Volume Issue Pages
Keywords functional asymmetry; strength of lateralization; direction of lateralization; advantages; disadvantages; vertebrate species; limb preference; eye bias
Abstract (down) Research on a growing number of vertebrate species has shown that the left and right sides of the brain process information in different ways and that lateralized brain function is expressed in both specific and broad aspects of behaviour. This paper reviews the available evidence relating strength of lateralization to behavioural/cognitive performance. It begins by considering the relationship between limb preference and behaviour in humans and primates from the perspectives of direction and strength of lateralization. In birds, eye preference is used as a reflection of brain asymmetry and the strength of this asymmetry is associated with behaviour important for survival (e.g., visual discrimination of food from non-food and performance of two tasks in parallel). The same applies to studies on aquatic species, mainly fish but also tadpoles, in which strength of lateralization has been assessed as eye preferences or turning biases. Overall, the empirical evidence across vertebrate species points to the conclusion that stronger lateralization is advantageous in a wide range of contexts. Brief discussion of interhemispheric communication follows together with discussion of experiments that examined the effects of sectioning pathways connecting the left and right sides of the brain, or of preventing the development of these left-right connections. The conclusion reached is that degree of functional lateralization affects behaviour in quite similar ways across vertebrate species. Although the direction of lateralization is also important, in many situations strength of lateralization matters more. Finally, possible interactions between asymmetry in different sensory modalities is considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title Symmetry
Series Volume 9 Series Issue 4 Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6167
Permanent link to this record
 

 
Author Krishnan, A.; Gandour, J.T.; Ananthakrishnan, S.; Bidelman, G.M.; Smalt, C.J.
Title Functional ear (a)symmetry in brainstem neural activity relevant to encoding of voice pitch: A precursor for hemispheric specialization? Type Journal Article
Year Publication Brain and Language Abbreviated Journal
Volume In Press, Corrected Proof Issue Pages
Keywords Auditory; Human; Brainstem; Pitch; Language; Mandarin Chinese; Fundamental frequency-following response (FFR); Functional ear asymmetry; Experience-dependent plasticity; Subcortical
Abstract (down) Pitch processing is lateralized to the right hemisphere; linguistic pitch is further mediated by left cortical areas. This experiment investigates whether ear asymmetries vary in brainstem representation of pitch depending on linguistic status. Brainstem frequency-following responses (FFRs) were elicited by monaural stimulation of the left and right ear of 15 native speakers of Mandarin Chinese using two synthetic speech stimuli that differ in linguistic status of tone. One represented a native lexical tone (Tone 2: T2); the other, T2', a nonnative variant in which the pitch contour was a mirror image of T2 with the same starting and ending frequencies. Two 40-ms portions of f0 contours were selected in order to compare two regions (R1, early; R2 late) differing in pitch acceleration rate and perceptual saliency. In R2, linguistic status effects revealed that T2 exhibited a larger degree of FFR rightward ear asymmetry as reflected in f0 amplitude relative to T2'. Relative to midline (ear asymmetry = 0), the only ear asymmetry reaching significance was that favoring left ear stimulation elicited by T2'. By left- and right-ear stimulation separately, FFRs elicited by T2 were larger than T2' in the right ear only. Within T2', FFRs elicited by the earlier region were larger than the later in both ears. Within T2, no significant differences in FFRS were observed between regions in either ear. Collectively, these findings support the idea that origins of cortical processing preferences for perceptually-salient portions of pitch are rooted in early, preattentive stages of processing in the brainstem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-934x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5391
Permanent link to this record
 

 
Author Austin, N.P.; Rogers, L.J.
Title Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses, Equus caballus Type Journal Article
Year 2012 Publication Animal Behaviour Abbreviated Journal Anim. Behav.
Volume 83 Issue 1 Pages 239-247
Keywords aggression; behavioural asymmetry; Equus caballus; eye preference; feral horse; limb preference; reactivity; side bias
Abstract (down) Observational field studies were conducted on two remote populations of feral horses in Australia to determine whether lateralization is a characteristic of Equus caballus as a species or results from handling by humans. Group 1 had been feral for two to five generations and Group 2 for 10–20 generations. In both groups, left-side biases were present during agonistic interactions and in reactivity and vigilance. Therefore, as in other vertebrates, the right hemisphere appears to be specialized to control agonistic behaviour and responses to potential threats. The leftwards bias was stronger in measures of behaviour involving more aggression and reactivity. Preferences to place one forelimb in front of the other during grazing were also determined. No population bias of forelimb preference was found, suggesting that such limb preferences present in domestic horses may be entrained. Since stronger individual limb preferences were found in immature than in adult feral horses, limb preference may be modified by maturation or experience in the natural habitat. Stronger limb preference was associated significantly with elevated attention to the environment but only in younger feral horses. No sex differences in lateralization were found. The findings are evidence that horses show visual lateralization, as in other vertebrates, not dependent on handling by humans. Limb preference during grazing, by contrast, does appear to depend on experience.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-3472 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 5651
Permanent link to this record
 

 
Author Maloney, S.J.
Title The Relationship Between Asymmetry and Athletic Performance: A Critical Review Type Journal Article
Year 2019 Publication The Journal of Strength & Conditioning Research Abbreviated Journal
Volume 33 Issue 9 Pages
Keywords symmetry; imbalance; power; strength
Abstract (down) Maloney, SJ. The relationship between asymmetry and athletic performance: A critical review. J Strength Cond Res 33(9): 2579-2593, 2019--Symmetry may be defined as the quality to demonstrate an exact correspondence of size, shape, and form when split along a given axis. Although it has been widely asserted that the bilateral asymmetries are detrimental to athletic performance, research does not wholly support such an association. Moreover, the research rarely seeks to distinguish between different types of bilateral asymmetry. Fluctuating asymmetries describe bilateral differences in anthropometric attributes, such as nostril width and ear size, and are thought to represent the developmental stability of an organism. There is evidence to suggest that fluctuating asymmetries may be related to impaired athletic performance, although contradictory findings have been reported. Sporting asymmetries is a term that may better describe bilateral differences in parameters, such as force output or jump height. These asymmetries are likely to be a function of limb dominance and magnified by long-standing participation within sport. Sporting asymmetries do not seem to carry a clear influence on athletic performance measures. Given the vast discrepancy in the methodologies used by different investigations, further research is warranted. Recent investigations have demonstrated that training interventions can reduce sporting asymmetries and improve performance. However, studies have not sought to determine whether the influence of sporting asymmetry is independent of improvements in neuromuscular parameters. It may be hypothesized that the deficient (weaker) limb has a greater potential for adaptation in comparison to the strong limb and may demonstrate greater responsiveness to training.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-8011 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ 00124278-201909000-00032 Serial 6662
Permanent link to this record