|   | 
Details
   web
Records
Author de Oliveira, K.; Soutello, R.V.G.; da Fonseca, R.; Costa, C.; de L. Meirelles, P.R.; Fachiolli, D.F.; Clayton, H.M.
Title Gymnastic Training and Dynamic Mobilization Exercises Improve Stride Quality and Increase Epaxial Muscle Size in Therapy Horses Type Journal Article
Year 2015 Publication Journal of Equine Veterinary Science Abbreviated Journal (down)
Volume 35 Issue 11 Pages 888-893
Keywords Equine; Hippotherapy; Therapeutic exercise; Dynamic mobilization exercise; Physical training; Three-dimensional movement
Abstract The objective was to evaluate the efficacy of gymnastic training (GYM) and dynamic mobilization exercises (DMEs) on stride length (SL) and epaxial muscle size in therapy horses. Nine cross-bred hippotherapy horses that performed three, 25-minute therapeutic riding sessions per week throughout the study period were randomly assigned to three experimental groups: a control group in which the horses were sedentary with no additional physical activity; a group that performed DMEs; and a group that performed both DMEs and additional GYM including pelvic tilting, backing, turning in small circles, and walking over a raised rail to strengthen the abdominal and pelvic stabilizer muscles. The exercises were performed 3 days per week for 3 months, with evaluations at the start and end of the study. Stride quality was assessed by measuring SL and tracking distance (TD). Epaxial muscle size was monitored by ultrasonographic measurement of m. longissimus dorsi (LD) thickness and m. multifidi (MM) cross-sectional area. Paired t tests were used to compare within groups across time, and between groups were detected using analysis of variance with Tukey post hoc test. When walking at 1.3 m/s, SL and TD at walk increased significantly (P < .05) in horses subjected to GYM. Thickness of LD did not change in any group, but cross-sectional area of MM increased significantly by 3.55 cm2 (DME) and 3.78 cm2 (GYM). It was concluded that GYM training improved stride quality and DME-stimulated MM hypertrophy which has been shown to improve intervertebral joint stability in other species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0737-0806 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6593
Permanent link to this record
 

 
Author Dyson, S.; Berger, J.; Ellis, A.D.; Mullard, J.
Title Development of an ethogram for a pain scoring system in ridden horses and its application to determine the presence of musculoskeletal pain Type Journal Article
Year 2018 Publication Journal of Veterinary Behavior Abbreviated Journal (down)
Volume 23 Issue Pages 47-57
Keywords Lameness; Equine behavior; Pain grading; Headshaking; Bucking; Rearing
Abstract There is evidence that more than 47% of the sports horse population in normal work may be lame, but the lameness is not recognized by owners or trainers. An alternative means of detecting pain may be recognition of behavioral changes in ridden horses. It has been demonstrated that there are differences in facial expressions in nonlame and lame horses. The purpose of this study was to develop a whole horse ethogram for ridden horses and to determine whether it could be applied repeatedly by 1 observer (repeatability study, 9 horses) and if, by application of a related pain behavior score, lame horses (n = 24) and nonlame horses (n = 13) could be differentiated. It was hypothesized that there would be some overlap in pain behavior scores among nonlame and lame horses; and that overall, nonlame horses would have a lower pain behavior score than lame horses. The ethogram was developed with 117 behavioral markers, and the horses were graded twice in random order by a trained specialist using video footage. Overall, there was a good correlation between the 2 assessments (P < 0.001; R2 = 0.91). Behavioral markers that were not consistent across the 2 assessments were omitted, reducing the ethogram to 70 markers. The modified ethogram was applied to video recordings of the nonlame horses and lame horses (ethogram evaluation). There was a strong correlation between 20 behavioral markers and the presence of lameness. The ethogram was subsequently simplified to 24 behavioral markers, by the amalgamation of similar behaviors which scored similarly and by omission of markers which showed unreliable results in relation to lameness. Following this, the maximum individual occurrence score for lame horses was 14 (out of 24 possible markers), with a median and mean score of 9 (±2 standard deviation) compared with a maximum score of 6 for nonlame horses, with a median and mean score of 2 (±1.4). For lame horses, the following behaviors occurred significantly more (P < 0.05, chi-square): ears back, mouth opening, tongue out, change in eye posture and expression, going above the bit, head tossing, tilting the head, unwillingness to go, crookedness, hurrying, changing gait spontaneously, poor quality canter, resisting, and stumbling and toe dragging. Recognition of these features as potential indicators of musculoskeletal pain may enable earlier recognition of lameness and avoidance of punishment-based training. Further research is necessary to verify this new ethogram for assessment of pain in ridden horses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-7878 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Equine Behaviour @ team @ Serial 6706
Permanent link to this record
 

 
Author Mizuguchi, M.; Arai, M.; Ke, Y.; Nitta, K.; Kuwajima, K.
Title Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy Type Journal Article
Year 1998 Publication Journal of Molecular Biology Abbreviated Journal (down)
Volume 283 Issue 1 Pages 265-277
Keywords equine lysozyme; protein folding; molten globule; stopped-flow; folding intermediate
Abstract The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of α-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number refbase @ user @ Serial 3990
Permanent link to this record