toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brennan, P.A.; Kendrick, K.M. doi  openurl
  Title Mammalian social odours: attraction and individual recognition Type Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal (down) Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1476 Pages 2061-2078  
  Keywords amygdala, maternal bonding, olfactory bulb, pregnancy block, social recognition, vomeronasal  
  Abstract Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor.The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4334  
Permanent link to this record
 

 
Author Broad, K.D.; Curley, J.P.; Keverne, E.B. doi  openurl
  Title Mother-infant bonding and the evolution of mammalian social relationships Type Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal (down) Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1476 Pages 2199-2214  
  Keywords Endorphin; Maternal behaviour; Olfactory memory; Opioids; Oxytocin; Pair bonding; Prefrontal cortex; Social learning  
  Abstract A wide variety of maternal, social and sexual bonding strategies have been described across mammalian species, including humans. Many of the neural and hormonal mechanisms that underpin the formation and maintenance of these bonds demonstrate a considerable degree of evolutionary conservation across a representative range of these species. However, there is also a considerable degree of diversity in both the way these mechanisms are activated and in the behavioural responses that result. In the majority of small-brained mammals (including rodents), the formation of a maternal or partner preference bond requires individual recognition by olfactory cues, activation of neural mechanisms concerned with social reward by these cues and gender-specific hormonal priming for behavioural output. With the evolutionary increase of neocortex seen in monkeys and apes, there has been a corresponding increase in the complexity of social relationships and bonding strategies together with a significant redundancy in hormonal priming for motivated behaviour. Olfactory recognition and olfactory inputs to areas of the brain concerned with social reward are downregulated and recognition is based on integration of multimodal sensory cues requiring an expanded neocortex, particularly the association cortex. This emancipation from olfactory and hormonal determinants of bonding has been succeeded by the increased importance of social learning that is necessitated by living in a complex social world and, especially in humans, a world that is dominated by cultural inheritance. © 2006 The Royal Society.  
  Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 6; Export Date: 23 October 2008; Source: Scopus Approved no  
  Call Number Equine Behaviour @ team @ Serial 4558  
Permanent link to this record
 

 
Author Sumpter, D.J.T. url  doi
openurl 
  Title The principles of collective animal behaviour Type Journal Article
  Year 2006 Publication Philosophical Transactions of the Royal Society B: Biological Sciences Abbreviated Journal (down) Phil. Trans. Biol. Sci.  
  Volume 361 Issue 1465 Pages 5-22  
  Keywords  
  Abstract In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 10.1098/rstb.2005.1733 Approved yes  
  Call Number Equine Behaviour @ team @ Serial 5145  
Permanent link to this record
 

 
Author Nudds, M.; Hurley, S. isbn  openurl
  Title Rational Animals? Type Book Whole
  Year 2006 Publication Oxford University Press Abbreviated Journal (down) Oxf. Univ. Pr.  
  Volume Issue Pages  
  Keywords  
  Abstract To what extent can animal behaviour be described as rational? What does it even mean to describe behaviour as rational? This book focuses on one of the major debates in science today – how closely does mental processing in animals resemble mental processing in humans. It addresses the question of whether and to what extent non-human animals are rational, that is, whether any animal behaviour can be regarded as the result of a rational thought processes. It does this with attention to three key questions, which recur throughout the book and which have both empirical and philosophical aspects: What kinds of behavioural tasks can animals successfully perform? What if any mental processes must be postulated to explain their performance at these tasks? What properties must processes have to count as rational? The book is distinctive in pursuing these questions not only in relation to our closest relatives, the primates, whose intelligence usually gets the most attention, but also in relation to birds and dolphins, where striking results are also being obtained. Some chapters focus on a particular species. They describe some of the extraordinary and complex behaviour of these species – using tools in novel ways to solve foraging problems, for example, or behaving in novel ways to solve complex social problems – and ask whether such behaviour should be explained in rational or merely mechanistic terms. Other chapters address more theoretical issues and ask, for example, what it means for behaviour to be rational, and whether rationality can be understood in the absence of language. The book includes many of the world's leading figures doing empirical work on rationality in primates, dolphins, and birds, as well as distinguished philosophers of mind and science. The book includes an editors' introduction which summarises the philosophical and empirical work presented, and draws together the issues discussed by the contributors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0198528272 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 608  
Permanent link to this record
 

 
Author Fabrega, H.J. doi  openurl
  Title Making sense of behavioral irregularities of great apes Type Journal Article
  Year 2006 Publication Neuroscience and Biobehavioral Reviews Abbreviated Journal (down) Neurosci Biobehav Rev  
  Volume 30 Issue 8 Pages 1260-73; discussion 1274-7  
  Keywords Animals; Behavior/*physiology; Evolution; Hominidae/*physiology; Humans; Mental Disorders/*physiopathology; Neurosciences; *Psychopathology; Social Behavior  
  Abstract Psychopathology, mental illness, and psychiatric treatment are concepts relevant to modern medicine and medical psychology and replete with cumbersome intellectual and literary baggage. They bear the imprint of suppositions, world views, and general beliefs and values exemplified in the science, history, and general culture of Anglo European societies. The study in higher apes of phenomena addressed by such concepts raises conceptual dilemmas, usually termed speciesism and anthropomorphism, not unlike those encountered in comparative human studies of similar phenomena across cultures and historical periods, namely, ethnocentrism and anachronism. The authors' synthesis of literature and their analysis of the implications of higher ape psychopathology represent an epistemically compelling account that broadens the scope of the comparative study of behavioral irregularities, a topic that provides a different slant for examining challenging questions in evolutionary biology and primatology, such as cognition, self awareness, intentional behavior, culture and behavioral traditions, social intelligence, sickness and healing, and altruism. Theoretical and empirical study of this topic expands formulation and can help provide informative answers about human evolution as well as essential features of human psychiatric syndromes, with potential practical implications. The study of psychopathology of higher apes and other non human primates represents an appropriate focus for neuroscience and bio-behavioral sciences.  
  Address Department of Psychiatry and Anthropology, University of Pittsburgh, School of Medicine, 3811 Ohara Street, Pittsburgh, PA 15213, USA. hfabregajr@adelphia.net  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0149-7634 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17079015 Approved no  
  Call Number Equine Behaviour @ team @ Serial 2802  
Permanent link to this record
 

 
Author Czeh, B.; Muller-Keuker, J.I.H.; Rygula, R.; Abumaria, N.; Hiemke, C.; Domenici, E.; Fuchs, E. doi  openurl
  Title Chronic Social Stress Inhibits Cell Proliferation in the Adult Medial Prefrontal Cortex: Hemispheric Asymmetry and Reversal by Fluoxetine Treatment Type Journal Article
  Year 2006 Publication Abbreviated Journal (down) Neuropsychopharmacology  
  Volume 32 Issue 7 Pages 1490-1503  
  Keywords neurogenesis, stereology, cell number, glia, NG2, hippocampus  
  Abstract Profound neuroplastic changes have been demonstrated in various limbic structures after chronic stress exposure and antidepressant treatment in animal models of mood disorders. Here, we examined in rats the effect of chronic social stress and concomitant antidepressant treatment on cell proliferation in the medial prefrontal cortex (mPFC). We also examined possible hemispheric differences. Animals were subjected to 5 weeks of daily social defeat by an aggressive conspecific and received concomitant, daily, oral fluoxetine (10 mg/kg) during the last 4 weeks. Bromodeoxyuridine (BrdU) labeling and quantitative stereological techniques were used to evaluate the treatment effects on proliferation and survival of newborn cells in limbic structures such as the mPFC and the hippocampal dentate gyrus, in comparison with nonlimbic structures such as the primary motor cortex and the subventricular zone. Phenotypic analysis showed that neurogenesis dominated the dentate gyrus, whereas in the mPFC most newborn cells were glia, with smaller numbers of endothelial cells. Chronic stress significantly suppressed cytogenesis in the mPFC and neurogenesis in the dentate gyrus, but had minor effect in nonlimbic structures. Fluoxetine treatment counteracted the inhibitory effect of stress. Hemispheric comparison revealed that the rate of cytogenesis was significantly higher in the left mPFC of control animals, whereas stress inverted this asymmetry, yielding a significantly higher incidence of newborn cells in the right mPFC. Fluoxetine treatment abolished hemispheric asymmetry in both control and stressed animals. These pronounced changes in gliogenesis after chronic stress exposure may relate to the abnormalities of glial cell numbers reported in the frontolimbic areas of depressed patients.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0893-133x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5785  
Permanent link to this record
 

 
Author Moses, S.N.; Villate, C.; Ryan, J.D. doi  openurl
  Title An investigation of learning strategy supporting transitive inference performance in humans compared to other species Type Journal Article
  Year 2006 Publication Neuropsychologia Abbreviated Journal (down) Neuropsychologia  
  Volume 44 Issue 8 Pages 1370-1387  
  Keywords Adult; Analysis of Variance; Association Learning/*physiology; *Cognition; *Concept Formation; Female; Humans; *Logic; Male; Pattern Recognition, Visual/physiology; Photic Stimulation/methods; Reaction Time/physiology  
  Abstract Generalizations about neural function are often drawn from non-human animal models to human cognition, however, the assumption of cross-species conservation may sometimes be invalid. Humans may use different strategies mediated by alternative structures, or similar structures may operate differently within the context of the human brain. The transitive inference problem, considered a hallmark of logical reasoning, can be solved by non-human species via associative learning rather than logic. We tested whether humans use similar strategies to other species for transitive inference. Results are crucial for evaluating the validity of widely accepted assumptions of similar neural substrates underlying performance in humans and other animals. Here we show that successful transitive inference in humans is unrelated to use of associative learning strategies and is associated with ability to report the hierarchical relationship among stimuli. Our work stipulates that cross-species generalizations must be interpreted cautiously, since performance on the same task may be mediated by different strategies and/or neural systems.  
  Address Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada. smoses@rotman-baycrest.on.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-3932 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16503340 Approved no  
  Call Number refbase @ user @ Serial 153  
Permanent link to this record
 

 
Author Ikeda, M.; Patterson, K.; Graham, K.S.; Ralph, M.A.L.; Hodges, J.R. doi  openurl
  Title A horse of a different colour: do patients with semantic dementia recognise different versions of the same object as the same? Type Journal Article
  Year 2006 Publication Neuropsychologia Abbreviated Journal (down) Neuropsychologia  
  Volume 44 Issue 4 Pages 566-575  
  Keywords Adult; Aged; Anomia/diagnosis/psychology; Atrophy; *Attention; Color Perception; Dementia/*diagnosis/psychology; *Discrimination Learning; Dominance, Cerebral; Female; Humans; Male; *Memory, Short-Term; Middle Aged; Neuropsychological Tests; Orientation; *Pattern Recognition, Visual; Reference Values; Retention (Psychology); Semantics; Size Perception; Temporal Lobe/pathology  
  Abstract Ten patients with semantic dementia resulting from bilateral anterior temporal lobe atrophy, and 10 matched controls, were tested on an object recognition task in which they were invited to choose (from a four-item array) the picture representing “the same thing” as an object picture that they had just inspected and attempted to name. The target in the response array was never physically identical to the studied picture but differed from it – in the various conditions – in size, angle of view, colour or exemplar (e.g. a different breed of dog). In one test block for each patient, the response array was presented immediately after the studied picture was removed; in another block, a 2 min filled delay was inserted between study and test. The patients performed relatively well when the studied object and target response differed only in the size of the picture on the page, but were significantly impaired as a group in the other three type-of-change conditions, even with no delay between study and test. The five patients whose structural brain imaging revealed major right-temporal atrophy were more impaired overall, and also more affected by the 2 min delay, than the five patients with an asymmetric pattern characterised by predominant left-sided atrophy. These results are interpreted in terms of a hypothesis that successful classification of an object token as an object type is not a pre-semantic ability but rather results from interaction of perceptual and conceptual processing.  
  Address Department of Neuropsychiatry, Ehime University School of Medicine, Shitsukawa, Toon City, Ehime 791-0295, Japan. mikeda@m.ehime-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-3932 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16115656 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4059  
Permanent link to this record
 

 
Author Flack, J.C.; Girvan, M.; de Waal, F.B.M.; Krakauer, D.C. doi  openurl
  Title Policing stabilizes construction of social niches in primates Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal (down) Nature  
  Volume 439 Issue 7075 Pages 426-429  
  Keywords Animals; Conflict (Psychology); Female; Macaca nemestrina/*physiology/*psychology; Male; Models, Biological; *Social Behavior  
  Abstract All organisms interact with their environment, and in doing so shape it, modifying resource availability. Termed niche construction, this process has been studied primarily at the ecological level with an emphasis on the consequences of construction across generations. We focus on the behavioural process of construction within a single generation, identifying the role a robustness mechanism--conflict management--has in promoting interactions that build social resource networks or social niches. Using 'knockout' experiments on a large, captive group of pigtailed macaques (Macaca nemestrina), we show that a policing function, performed infrequently by a small subset of individuals, significantly contributes to maintaining stable resource networks in the face of chronic perturbations that arise through conflict. When policing is absent, social niches destabilize, with group members building smaller, less diverse, and less integrated grooming, play, proximity and contact-sitting networks. Instability is quantified in terms of reduced mean degree, increased clustering, reduced reach, and increased assortativity. Policing not only controls conflict, we find it significantly influences the structure of networks that constitute essential social resources in gregarious primate societies. The structure of such networks plays a critical role in infant survivorship, emergence and spread of cooperative behaviour, social learning and cultural traditions.  
  Address Santa Fe Institute, Santa Fe, New Mexico 87501, USA. jflack@santafe.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16437106 Approved no  
  Call Number refbase @ user @ Serial 298  
Permanent link to this record
 

 
Author Gentner, T.Q.; Fenn, K.M.; Margoliash, D.; Nusbaum, H.C. doi  openurl
  Title Recursive syntactic pattern learning by songbirds Type Journal Article
  Year 2006 Publication Nature Abbreviated Journal (down) Nature  
  Volume 440 Issue 7088 Pages 1204-1207  
  Keywords Acoustic Stimulation; *Animal Communication; Animals; Auditory Perception/*physiology; Humans; *Language; Learning/*physiology; Linguistics; Models, Neurological; Semantics; Starlings/*physiology; Stochastic Processes  
  Abstract Humans regularly produce new utterances that are understood by other members of the same language community. Linguistic theories account for this ability through the use of syntactic rules (or generative grammars) that describe the acceptable structure of utterances. The recursive, hierarchical embedding of language units (for example, words or phrases within shorter sentences) that is part of the ability to construct new utterances minimally requires a 'context-free' grammar that is more complex than the 'finite-state' grammars thought sufficient to specify the structure of all non-human communication signals. Recent hypotheses make the central claim that the capacity for syntactic recursion forms the computational core of a uniquely human language faculty. Here we show that European starlings (Sturnus vulgaris) accurately recognize acoustic patterns defined by a recursive, self-embedding, context-free grammar. They are also able to classify new patterns defined by the grammar and reliably exclude agrammatical patterns. Thus, the capacity to classify sequences from recursive, centre-embedded grammars is not uniquely human. This finding opens a new range of complex syntactic processing mechanisms to physiological investigation.  
  Address Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA. tgentner@ucsd.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16641998 Approved no  
  Call Number refbase @ user @ Serial 353  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print