toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marino, L. doi  openurl
  Title Convergence of complex cognitive abilities in cetaceans and primates Type Journal Article
  Year 2002 Publication Brain, Behavior and Evolution Abbreviated Journal (down) Brain Behav Evol  
  Volume 59 Issue 1-2 Pages 21-32  
  Keywords Animal Communication; Animals; Brain/physiology; Cerebral Cortex/physiology; Cetacea/*physiology; Cognition/*physiology; *Evolution; Humans; Intelligence; Primates/*physiology  
  Abstract What examples of convergence in higher-level complex cognitive characteristics exist in the animal kingdom? In this paper I will provide evidence that convergent intelligence has occurred in two distantly related mammalian taxa. One of these is the order Cetacea (dolphins, whales and porpoises) and the other is our own order Primates, and in particular the suborder anthropoid primates (monkeys, apes, and humans). Despite a deep evolutionary divergence, adaptation to physically dissimilar environments, and very different neuroanatomical organization, some primates and cetaceans show striking convergence in social behavior, artificial 'language' comprehension, and self-recognition ability. Taken together, these findings have important implications for understanding the generality and specificity of those processes that underlie cognition in different species and the nature of the evolution of intelligence.  
  Address Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Ga. 30322, USA. lmarino@emory.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12097858 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4158  
Permanent link to this record
 

 
Author Andrew, R.J. url  doi
openurl 
  Title Changes in visual responsiveness following intercollicular lesions and their effects on avoidance and attack Type Journal Article
  Year 1974 Publication Brain, Behavior and Evolution Abbreviated Journal (down) Brain Behav Evol  
  Volume 10 Issue 4-5 Pages 400-424  
  Keywords Animals; Chickens; Humans; Male; Mutism; Superior Colliculi/*physiology; Tectum Mesencephali; Testosterone; Visual Fields; Vocalization, Animal  
  Abstract In the normal chick, conspicuous visual stimuli induce targetting and pecking together, with vocalization. All three are abolished by lesion of the intercollicular area (ICo) or of connections passing through its medial margin. After such lesions, chicks also cease to treat significant visual stimuli as if they were startling and exciting, and may delay response as a result. However, they are still able to recognise, orient accurately to, and respond appropriately to, a variety of complex visual stimuli (e.g. food grains, copulation object). In addition, they are little affected by strange surroundings. Lesion evidence suggests the mammalian subcollicular area to have similar functions to the ICo and to be homologous with it. A route (present in bird), which is well-known in mammals for its association with threat, defense and escape evoked by strange and frightening objects (amygdala-diencephalic periventricular system-central mesencephalic grey, A-DPS-CMG) is stimuli via the 2 ICo (subcollicular area). Two different mechanisms may be involved caudal to the ICo. One consists of tectal afferents which might modulate the evocation of targetting, pecking and other responses via the tectum. The other is the predorsal system of tectal efferents which may mediate such responses. Classical syndromes of tameness and unresponsiveness produced by various interruptions of the A-DPS-CMG route may depend on interruption of connections to these midbrain mechanisms. Attack is depressed by ICo lesions as one aspect of reduced responsiveness to conspicuous and startling visual stimuli. Avoidance, which is apparently mediated by a separate system, much as in Anura, is facilitated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1169102 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4626  
Permanent link to this record
 

 
Author Huber, R.; van Staaden, M.J.; Kaufman, L.S.; Liem, K.F. doi  openurl
  Title Microhabitat Use, Trophic Patterns, and the Evolution of Brain Structure in African Cichlids Type Journal Article
  Year 1997 Publication Brain, Behavior and Evolution Abbreviated Journal (down) Brain Behav Evol  
  Volume 50 Issue 3 Pages 167-182  
  Keywords  
  Abstract The species assemblages of cichlids in the three largest African Great Lakes are among the richest concentrations of vertebrate species on earth. The faunas are broadly similar in terms of trophic diversity, species richness, rates of endemism, and taxonomic composition, yet they are historically independent of each other. Hence, they offer a true and unique evolutionary experiment to test hypotheses concerning the mutual dependencies of ecology and brain morphology. We examined the brains of 189 species of cichlids from the three large lakes: Victoria, Tanganyika, and Malawi. A first paper demonstrated that patterns of evolutionary change in cichlid brain morphology are similar across taxonomic boundaries as well as across the three lakes [van Staaden et al., 1995 ZACS 98: 165–178]. Here we report a close relationship between the relative sizes of various brain structures and variables related to the utilization of habitat and prey. Causality is difficult to assign in this context, nonetheless, prey size and agility, turbidity levels, depth, and substrate complexity are all highly predictive of variation in brain structure. Areas associated with primary sensory functions such as vision and taste relate significantly to differences in feeding habits. Turbidity and depth are closely associated with differences in eye size, and large eyes are associated with species that pick plankton from the water column. Piscivorous taxa and others that utilize motile prey are characterized by a well developed optic tectum and a large cerebellum compared to species that prey on molluscs or plants. Structures relating to taste are well developed in species feeding on benthos over muddy or sandy substrates. The data militated against the existence of compensatory changes in brain structure. Thus enhanced development of a particular function is generally not accompanied by a parallel reduction of structures related to other modalities. Although genetic and environmental influences during ontogeny of the brain cannot be isolated, this study provides a rich source of hypotheses concerning the way the nervous system functions under various environmental conditions and how it has responded to natural selection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5454  
Permanent link to this record
 

 
Author Cozzi, B.; Povinelli, M.; Ballarin, C.; Granato, A. url  doi
openurl 
  Title The Brain of the Horse: Weight and Cephalization Quotients Type Journal Article
  Year 2014 Publication Brain, Behavior and Evolution Abbreviated Journal (down) Brain Behav Evol  
  Volume 83 Issue 1 Pages 9-16  
  Keywords  
  Abstract The horse is a common domestic animal whose anatomy has been studied since the XVI century. However, a modern neuroanatomy of this species does not exist and most of the data utilized in textbooks and reviews derive from single specimens or relatively old literature. Here, we report information on the brain of Equus caballus obtained by sampling 131 horses, including brain weight (as a whole and subdivided into its constituents), encephalization quotient (EQ), and cerebellar quotient (CQ), and comparisons with what is known about other relevant species. The mean weight of the fresh brains in our experimental series was 598.63 g (SEM ± 7.65), with a mean body weight of 514.12 kg (SEM ± 15.42). The EQ was 0.78 and the CQ was 0.841. The data we obtained indicate that the horse possesses a large, convoluted brain, with a weight similar to that of other hoofed species of like mass. However, the shape of the brain, the noteworthy folding of the neocortex, and the peculiar longitudinal distribution of the gyri suggest an evolutionary specificity at least partially separate from that of the Cetartiodactyla (even-toed mammals and cetaceans) with whom Perissodactyla (odd-toed mammals) are often grouped.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 6592  
Permanent link to this record
 

 
Author Rands, S.A.; Cowlishaw, G.; Pettifor, R.A.; Rowcliffe, J.M.; Johnstone, R.A. url  doi
openurl 
  Title The emergence of leaders and followers in foraging pairs when the qualities of individuals differ Type Journal Article
  Year 2008 Publication BMC Evolutionary Biology Abbreviated Journal (down) BMC Evol Biol  
  Volume 8 Issue Pages 51  
  Keywords Animals; *Feeding Behavior; *Food Chain; *Models, Biological; *Social Dominance  
  Abstract BACKGROUND: Foraging in groups offers animals a number of advantages, such as increasing their likelihood of finding food or detecting and avoiding predators. In order for a group to remain together, there has to be some degree of coordination of behaviour and movement between its members (which may in some cases be initiated by a decision-making leader, and in other cases may emerge as an underlying property of the group). For example, behavioural synchronisation is a phenomenon where animals within a group initiate and then continue to conduct identical behaviours, and has been characterised for a wide range of species. We examine how a pair of animals should behave using a state-dependent approach, and ask what conditions are likely to lead to behavioural synchronisation occurring, and whether one of the individuals is more likely to act as a leader. RESULTS: The model we describe considers how the energetic gain, metabolic requirements and predation risks faced by the individuals affect measures of their energetic state and behaviour (such as the degree of behavioural synchronisation seen within the pair, and the value to an individual of knowing the energetic state of its colleague). We explore how predictable changes in these measures are in response to changes in physiological requirements and predation risk. We also consider how these measures should change when the members of the pair are not identical in their metabolic requirements or their susceptibility to predation. We find that many of the changes seen in these measures are complex, especially when asymmetries exist between the members of the pair. CONCLUSION: Analyses are presented that demonstrate that, although these general patterns are robust, care needs to be taken when considering the effects of individual differences, as the relationship between individual differences and the resulting qualitative changes in behaviour may be complex. We discuss how these results are related to experimental observations, and how the model and its predictions could be extended.  
  Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. sean.rands@bristol.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18282297 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5126  
Permanent link to this record
 

 
Author Packer, C.; Pusey, A. E. openurl 
  Title Asymmetric contests in social mammals: respect, manipulation and age-specific aspects Type Book Chapter
  Year 1985 Publication Evolution: Essays in Honour of John Maynard Smith Abbreviated Journal (down)  
  Volume Issue Pages 173-86  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Camebridge University Press Place of Publication Camebridge Editor Greenwood, P.J.; Slatkin, M.;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 819  
Permanent link to this record
 

 
Author Bökönyi, S. isbn  openurl
  Title Horse Type Book Chapter
  Year 1984 Publication Evolution of domesticated animals Abbreviated Journal (down)  
  Volume 18 Issue Pages 162-173  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons Place of Publication Hoboken, NJ Editor Manson  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Product Details * Hardcover * Publisher: John Wiley & Sons (May 1986) * ISBN-10: 047020 Medium  
  Area Expedition Conference  
  Notes from Professor Hans Klingels Equine Reference List Approved no  
  Call Number Serial 949  
Permanent link to this record
 

 
Author McGregor, P.K.; Dabelsteen, T. isbn  openurl
  Title Communication Networks Type Book Chapter
  Year 1976 Publication Ecology and evolution of acoustic communication in birds Abbreviated Journal (down)  
  Volume Issue Pages 409-425  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Cornell University Press Place of Publication Ithaca Editor Kroodsma, D. E.; Miller, E. H.  
  Language Englisch Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0801482212 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2167  
Permanent link to this record
 

 
Author Dukas, R. url  doi
openurl 
  Title Evolutionary Biology Of Animal Cognition Type Journal Article
  Year 2004 Publication Annual Review of Ecology, Evolution, and Systematics Abbreviated Journal (down)  
  Volume 35 Issue 1 Pages 347-374  
  Keywords  
  Abstract This review focuses on five key evolutionary issues pertaining to animal cognition, defined as the neuronal processes concerned with the acquisition, retention, and use of information. Whereas the use of information, or decision making, has been relatively well examined by students of behavior, evolutionary aspects of other cognitive traits that affect behavior, including perception, learning, memory, and attention, are less well understood. First, there is ample evidence for genetically based individual variation in cognitive traits, although much of the information for some traits comes from humans. Second, several studies documented positive association between cognitive abilities and performance measures linked to fitness. Third, information on the evolution of cognitive traits is available primarily for color vision and decision making. Fourth, much of the data on plasticity of cognitive traits appears to reflect nonadaptive phenotypic plasticity, perhaps because few evolutionary analyses of cognitive plasticity have been carried out. Nonetheless, several studies suggest that cognitive traits show adaptive plasticity, and at least one study documented genetically based individual variation in plasticity. Fifth, whereas assertions that cognition has played a central role in animal evolution are not supported by currently available data, theoretical considerations indicate that cognition may either increase or decrease the rate of evolutionary change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 2970  
Permanent link to this record
 

 
Author Rankin, D.J.; Lopez-Sepulcre, A.; Foster, K.R.; Kokko, H. url  doi
openurl 
  Title Species-level selection reduces selfishness through competitive exclusion Type Journal Article
  Year 2007 Publication Journal of Evolutionary Biology Abbreviated Journal (down)  
  Volume 20 Issue 4 Pages 1459-1468  
  Keywords  
  Abstract Abstract Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a .tragedy of the commons., where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species-level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual-level selection with ecology in two interacting species. Our model is not influenced by kin or trait-group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species-level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print