|   | 
Details
   web
Records
Author Conradt, L.; Roper, T.J.
Title Group decision-making in animals Type Journal Article
Year 2003 Publication Nature Abbreviated Journal (up) Nature
Volume 421 Issue 6919 Pages 155-158
Keywords Animals; Behavior, Animal/*physiology; *Decision Making; Democracy; Group Processes; *Models, Biological; Population Density; Social Behavior
Abstract Groups of animals often need to make communal decisions, for example about which activities to perform, when to perform them and which direction to travel in; however, little is known about how they do so. Here, we model the fitness consequences of two possible decision-making mechanisms: 'despotism' and 'democracy'. We show that under most conditions, the costs to subordinate group members, and to the group as a whole, are considerably higher for despotic than for democratic decisions. Even when the despot is the most experienced group member, it only pays other members to accept its decision when group size is small and the difference in information is large. Democratic decisions are more beneficial primarily because they tend to produce less extreme decisions, rather than because each individual has an influence on the decision per se. Our model suggests that democracy should be widespread and makes quantitative, testable predictions about group decision-making in non-humans.
Address School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK. l.conradt@sussex.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:12520299 Approved no
Call Number Equine Behaviour @ team @ Serial 5136
Permanent link to this record
 

 
Author Rands, S.A.; Cowlishaw, G.; Pettifor, R.A.; Rowcliffe, J.M.; Johnstone, R.A.
Title Spontaneous emergence of leaders and followers in foraging pairs Type Journal Article
Year 2003 Publication Nature Abbreviated Journal (up) Nature
Volume 423 Issue 6938 Pages 432-434
Keywords Animals; *Energy Metabolism; Food; *Food Chain; *Models, Biological; Motor Activity; *Social Behavior; Time Factors
Abstract Animals that forage socially often stand to gain from coordination of their behaviour. Yet it is not known how group members reach a consensus on the timing of foraging bouts. Here we demonstrate a simple process by which this may occur. We develop a state-dependent, dynamic game model of foraging by a pair of animals, in which each individual chooses between resting or foraging during a series of consecutive periods, so as to maximize its own individual chances of survival. We find that, if there is an advantage to foraging together, the equilibrium behaviour of both individuals becomes highly synchronized. As a result of this synchronization, differences in the energetic reserves of the two players spontaneously develop, leading them to adopt different behavioural roles. The individual with lower reserves emerges as the 'pace-maker' who determines when the pair should forage, providing a straightforward resolution to the problem of group coordination. Moreover, the strategy that gives rise to this behaviour can be implemented by a simple 'rule of thumb' that requires no detailed knowledge of the state of other individuals.
Address Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. s.rands@zoo.cam.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:12761547 Approved no
Call Number Equine Behaviour @ team @ Serial 5138
Permanent link to this record
 

 
Author Kaplan, A.I.; Borodovskii, M.I.
Title [Alternative animal behavior: a model and its statistical characteristics] Type Journal Article
Year 1989 Publication Nauchnye Doklady Vysshei Shkoly. Biologicheskie Nauki Abbreviated Journal (up) Nauchnye Doki Vyss Shkoly Biol Nauki
Volume Issue 3 Pages 29-32
Keywords Animals; *Behavior, Animal; Cognition; Male; Mathematics; *Models, Biological; *Models, Statistical; Rats; Reinforcement (Psychology)
Abstract The rats' alternative behaviour in T-maze at simultaneous two-sided food refreshment in 13 trials a day during 6 days has been studied. It has been found that in the first testing days the indexes of alternative behaviour of animals correspond to the characteristics of the random alternation. However, on the 5-6th day of testing in the overwhelming majority of rats the true deviation of alternation index above or below than the theoretical values has been revealed. A question on the existence of two strategies of cognitive behaviour alteration and perseveration in rat population is under discussion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title Al'ternativnoe povedenie zhivotnykh: model' i statisticheskie kharakteristiki
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0470-4606 ISBN Medium
Area Expedition Conference
Notes PMID:2742929 Approved no
Call Number Equine Behaviour @ team @ Serial 2799
Permanent link to this record
 

 
Author Cameron, E.Z.
Title Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism Type Journal Article
Year 2004 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal (up) Proc Biol Sci
Volume 271 Issue 1549 Pages 1723-1728
Keywords Age Factors; Animals; Body Constitution; *Evolution; Female; Glucose/metabolism/physiology; Litter Size; Male; Mammals/*physiology; *Models, Biological; Reproduction/physiology; Seasons; Sex Factors; *Sex Ratio; Time Factors
Abstract Evolutionary theory predicts that mothers of different condition should adjust the birth sex ratio of their offspring in relation to future reproductive benefits. Published studies addressing variation in mammalian sex ratios have produced surprisingly contradictory results. Explaining the source of such variation has been a challenge for sex-ratio theory, not least because no mechanism for sex-ratio adjustment is known. I conducted a meta-analysis of previous mammalian sex-ratio studies to determine if there are any overall patterns in sex-ratio variation. The contradictory nature of previous results was confirmed. However, studies that investigated indices of condition around conception show almost unanimous support for the prediction that mothers in good condition bias their litters towards sons. Recent research on the role of glucose in reproductive functioning have shown that excess glucose favours the development of male blastocysts, providing a potential mechanism for sex-ratio variation in relation to maternal condition around conception. Furthermore, many of the conflicting results from studies on sex-ratio adjustment would be explained if glucose levels in utero during early cell division contributed to the determination of offspring sex ratios.
Address Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa. ezcameron@zoology.up.ac.za
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:15306293 Approved no
Call Number refbase @ user @ Serial 413
Permanent link to this record
 

 
Author Zhou, W.-X.; Sornette, D.; Hill, R.A.; Dunbar, R.I.M.
Title Discrete hierarchical organization of social group sizes Type Journal Article
Year 2005 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal (up) Proc Biol Sci
Volume 272 Issue 1561 Pages 439-444
Keywords Anthropology, Cultural; *Group Structure; Humans; *Models, Biological; *Social Behavior; *Social Environment
Abstract The 'social brain hypothesis' for the evolution of large brains in primates has led to evidence for the coevolution of neocortical size and social group sizes, suggesting that there is a cognitive constraint on group size that depends, in some way, on the volume of neural material available for processing and synthesizing information on social relationships. More recently, work on both human and non-human primates has suggested that social groups are often hierarchically structured. We combine data on human grouping patterns in a comprehensive and systematic study. Using fractal analysis, we identify, with high statistical confidence, a discrete hierarchy of group sizes with a preferred scaling ratio close to three: rather than a single or a continuous spectrum of group sizes, humans spontaneously form groups of preferred sizes organized in a geometrical series approximating 3-5, 9-15, 30-45, etc. Such discrete scale invariance could be related to that identified in signatures of herding behaviour in financial markets and might reflect a hierarchical processing of social nearness by human brains.
Address State Key Laboratory of Chemical Reaction Engineering, East China University of Science and Technology, Shanghai 200237, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:15734699 Approved no
Call Number refbase @ user @ Serial 549
Permanent link to this record
 

 
Author Scheffer, M.; van Nes, E.H.
Title Self-organized similarity, the evolutionary emergence of groups of similar species Type Journal Article
Year 2006 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal (up) Proc. Natl. Acad. Sci. U.S.A.
Volume 103 Issue 16 Pages 6230-6235
Keywords Animals; *Competitive Behavior; *Ecosystem; *Evolution; *Models, Biological
Abstract Ecologists have long been puzzled by the fact that there are so many similar species in nature. Here we show that self-organized clusters of look-a-likes may emerge spontaneously from coevolution of competitors. The explanation is that there are two alternative ways to survive together: being sufficiently different or being sufficiently similar. Using a model based on classical competition theory, we demonstrate a tendency for evolutionary emergence of regularly spaced lumps of similar species along a niche axis. Indeed, such lumpy patterns are commonly observed in size distributions of organisms ranging from algae, zooplankton, and beetles to birds and mammals, and could not be well explained by earlier theory. Our results suggest that these patterns may represent self-constructed niches emerging from competitive interactions. A corollary of our findings is that, whereas in species-poor communities sympatric speciation and invasion of open niches is possible, species-saturated communities may be characterized by convergent evolution and invasion by look-a-likes.
Address Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 8080, 6700 DD, Wageningen, The Netherlands. marten.scheffer@wur.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:16585519 Approved no
Call Number refbase @ user @ Serial 510
Permanent link to this record