toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pick, D. Kendra, B.; Steciuch, C. pdf  openurl
  Title The Familiarity Heuristic in the Horse (Equus caballus) Type Conference Article
  Year 2015 Publication Proceedings of the 3. International Equine Science Meeting Abbreviated Journal Proc. 3. Int. Equine. Sci. Mtg  
  Volume Issue Pages  
  Keywords color perception, learning theory, prospect theory  
  Abstract This study replicated an unreported finding observed in a color perception experiment (Pick, Lovell, Brown, & Dail, 1994) where, after using the method of successive approximations to train a blue-gray discrimination, red-gray trials were initiated without further training. Although a gray choice had never been reinforced, the subject chose gray on the first 20 trials (p < .000001). In the study reported here, a horse was trained to approach a red feed bucket and not a green feed bucket. After the subject mastered the discrimination, a blue bucket was substituted for the previously reinforced red bucket. With double-blind controls in place, the subject chose the unreinforced green bucket on 15 out of the first 20 blue-green trials yielding a binomial p = 0.0148 that this outcome could be due to chance alone. These results are contrary to all behavioristic psychological learning theories, but consistent with prospect theory (Kahneman & Tversky, 1979). Prospect theory predicts that given a choice between two previously unreinforced stimuli, one familiar and the other novel, humans will choose the familiar. It is argued that the bias toward the familiar is the basis to a heuristic that has a genetic origin and should exist in other animals on the phylogenetic scale. The results of this study indicate that the heuristic is available at least as far down the scale as the horse. Conceptual replications using shape stimuli and sound stimuli are in progress.  
  Address  
  Corporate Author Pick, D. Thesis  
  Publisher Xenophon Publishing Place of Publication Wald Editor ; Krueger, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-3-95625-000-2 ISBN Medium  
  Area Expedition Conference  
  Notes Id - Approved no  
  Call Number Equine Behaviour @ team @ Serial 5899  
Permanent link to this record
 

 
Author Heffner, R.S.; Heffner, H.E. url  openurl
  Title Localization of tones by horses: use of binaural cues and the role of the superior olivary complex Type Journal Article
  Year 1986 Publication Behavioral Neuroscience Abbreviated Journal Behav Neurosci  
  Volume 100 Issue 1 Pages 93-103  
  Keywords Animals; Auditory Pathways/physiology; Auditory Perception/*physiology; Avoidance Learning/physiology; Brain Mapping; Electroshock; Female; Horses/*physiology; Male; Olivary Nucleus/anatomy & histology/*physiology; Orientation/physiology; Pitch Perception/physiology; Sound Localization/*physiology  
  Abstract The ability of horses to use binaural time and intensity difference cues to localize sound was assessed in free-field localization tests by using pure tones. The animals were required to discriminate the locus of a single tone pip ranging in frequency from 250 Hz to 25 kHz emitted by loudspeakers located 30 degrees to the left and right of the animals' midline (60 degrees total separation). Three animals were tested with a two-choice procedure; 2 additional animals were tested with a conditioned avoidance procedure. All 5 animals were able to localize 250 Hz, 500 Hz, and 1 kHz but were completely unable to localize 2 kHz and above. Because the frequency of ambiguity for the binaural phase cue delta phi for horses in this test was calculated to be 1.5 kHz, these results indicate that horses can use binaural time differences in the form of delta phi but are unable to use binaural intensity differences. This finding was supported by an unconditioned orientation test involving 4 additional horses, which showed that horses correctly orient to a 500-Hz tone pip but not to an 8-kHz tone pip. Analysis of the superior olivary complex, the brain stem nucleus at which binaural interactions first take place, reveals that the lateral superior olive (LSO) is relatively small in the horse and lacks the laminar arrangement of bipolar cells characteristic of the LSO of most mammals that can use binaural delta I.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7044 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:3954885 Approved no  
  Call Number Equine Behaviour @ team @ Serial 5634  
Permanent link to this record
 

 
Author Sankey, C.; Richard-Yris, M.-A.; Henry, S.; Fureix, C.; Nassur, F.; Hausberger, M. doi  openurl
  Title Reinforcement as a mediator of the perception of humans by horses (Equus caballus) Type Journal Article
  Year 2010 Publication Animal Cognition Abbreviated Journal Anim. Cogn.  
  Volume 13 Issue 5 Pages 753-764-764  
  Keywords Perception of humans – Human/animal relationship – Positive reinforcement – Negative reinforcement – Equus caballus  
  Abstract A central question in the interspecific human/animal relationship is how domestic animals perceive humans as a significant element of their environment. In this study, we tested the hypothesis that the use of positive or negative reinforcement in horse training may have consequences on the animals’ perception of humans, as a positive, negative or neutral element. Two groups of ponies were trained to walk backwards in response to a vocal order using either positive or negative reinforcement. Heart rate monitors and behavioural observations were used to assess the animals’ perception of humans on the short (just after training) and long (5 months later) terms. The results showed that the type of reinforcement had a major effect on the subsequent animals’ perception of familiar and unfamiliar humans. Negative reinforcement was rapidly associated with an increased emotional state, as revealed by heart rate measurements and behavioural observations (head movements and ears laid back position). Its use led the ponies to seek less contact with humans. On the contrary, ponies trained with positive reinforcement showed an increased interest in humans and sought contact after training. This is especially remarkable as it was reached in a maximum of 5 sessions of 1 to 3 min (i.e. 5 to 15 min) and had lasting effects (visible after 5 months). Even learning was positively influenced by positive reinforcement. Overall, horses seem capable of associating humans to particular experiences and display extended long-term memory abilities.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-9448 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 5175  
Permanent link to this record
 

 
Author Schwab, C.; Huber, L. url  doi
openurl 
  Title Obey or not obey? Dogs (Canis familiaris) behave differently in response to attentional states of their owners Type Journal Article
  Year 2006 Publication Journal of Comparative Psychology (Washington, D.C. : 1983) Abbreviated Journal J Comp Psychol  
  Volume 120 Issue 3 Pages 169-175  
  Keywords Animals; *Attention; Awareness; *Bonding, Human-Pet; *Cooperative Behavior; Cues; Dogs/*psychology; Humans; Motivation; *Nonverbal Communication; Social Perception; *Speech Perception; *Verbal Behavior  
  Abstract Sixteen domestic dogs (Canis familiaris) were tested in a familiar context in a series of 1-min trials on how well they obeyed after being told by their owner to lie down. Food was used in 1/3 of all trials, and during the trial the owner engaged in 1 of 5 activities. The dogs behaved differently depending on the owner's attention to them. When being watched by the owner, the dogs stayed lying down most often and/or for the longest time compared with when the owner read a book, watched TV, turned his or her back on them, or left the room. These results indicate that the dogs sensed the attentional state of their owners by judging observable behavioral cues such as eye contact and eye, head, and body orientation.  
  Address Department for Behavior, Neurobiology and Cognition, University of Vienna, Vienna, Austria. cpriberskyschwab@yahoo.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7036 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16893253 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4961  
Permanent link to this record
 

 
Author Friederici, A.D.; Alter, K. url  doi
openurl 
  Title Lateralization of auditory language functions: a dynamic dual pathway model Type Journal Article
  Year 2004 Publication Brain and Language Abbreviated Journal Brain Lang  
  Volume 89 Issue 2 Pages 267-276  
  Keywords Auditory Pathways/physiology; Brain Mapping; Comprehension/*physiology; Dominance, Cerebral/*physiology; Frontal Lobe/*physiology; Humans; Nerve Net/physiology; Phonetics; Semantics; Speech Acoustics; Speech Perception/*physiology; Temporal Lobe/*physiology  
  Abstract Spoken language comprehension requires the coordination of different subprocesses in time. After the initial acoustic analysis the system has to extract segmental information such as phonemes, syntactic elements and lexical-semantic elements as well as suprasegmental information such as accentuation and intonational phrases, i.e., prosody. According to the dynamic dual pathway model of auditory language comprehension syntactic and semantic information are primarily processed in a left hemispheric temporo-frontal pathway including separate circuits for syntactic and semantic information whereas sentence level prosody is processed in a right hemispheric temporo-frontal pathway. The relative lateralization of these functions occurs as a result of stimulus properties and processing demands. The observed interaction between syntactic and prosodic information during auditory sentence comprehension is attributed to dynamic interactions between the two hemispheres.  
  Address Max Planck Institute of Cognitive Neuroscience, P.O. Box 500 355, 04303 Leipzig, Germany. angelafr@cns.mpg.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15068909 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4722  
Permanent link to this record
 

 
Author George, I.; Cousillas, H.; Richard, J.-P.; Hausberger, M. url  doi
openurl 
  Title Song perception in the European starling: hemispheric specialisation and individual variations Type Journal Article
  Year 2002 Publication Comptes Rendus Biologies Abbreviated Journal Compt. Rend. Biol.  
  Volume 325 Issue 3 Pages 197-204  
  Keywords lateralisation; perception; birdsong; starling; electrophysiology; individual variations; latéralisation; perception; chant; étourneaux; électrophysiologie; variations individuelles  
  Abstract Hemispheric specialisation for speech in humans has been well documented. The lateralisation for song production observed in songbirds is reminiscent of this hemispheric dominance. In order to investigate whether song perception is also lateralised, we made multiunit recordings of the neuronal activity in the field L of starlings during the presentation of species-specific and artificial non-specific sounds. We observed a systematic stronger activation in one hemisphere than in the other one during the playback of species-specific sounds, with inter-subject variability in the predominant hemisphere for song perception. Such an asymmetry was not observed for artificial non-specific sounds. Thus, our results suggest that, at least at the individual level, the two hemispheres of the starlings' brain perceive and process conspecific signals differently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4636  
Permanent link to this record
 

 
Author Vallortigara, G.; Rogers, L.J. url  doi
openurl 
  Title Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization Type Journal Article
  Year 2005 Publication The Behavioral and Brain Sciences Abbreviated Journal Behav Brain Sci  
  Volume 28 Issue 4 Pages 575-89; discussion 589-633  
  Keywords Animals; Attention/*physiology; Behavior/*physiology; Behavior, Animal/*physiology; Dominance, Cerebral/*physiology; *Evolution; Humans; Models, Biological; Visual Perception/physiology  
  Abstract Recent evidence in natural and semi-natural settings has revealed a variety of left-right perceptual asymmetries among vertebrates. These include preferential use of the left or right visual hemifield during activities such as searching for food, agonistic responses, or escape from predators in animals as different as fish, amphibians, reptiles, birds, and mammals. There are obvious disadvantages in showing such directional asymmetries because relevant stimuli may be located to the animal's left or right at random; there is no a priori association between the meaning of a stimulus (e.g., its being a predator or a food item) and its being located to the animal's left or right. Moreover, other organisms (e.g., predators) could exploit the predictability of behavior that arises from population-level lateral biases. It might be argued that lateralization of function enhances cognitive capacity and efficiency of the brain, thus counteracting the ecological disadvantages of lateral biases in behavior. However, such an increase in brain efficiency could be obtained by each individual being lateralized without any need to align the direction of the asymmetry in the majority of the individuals of the population. Here we argue that the alignment of the direction of behavioral asymmetries at the population level arises as an “evolutionarily stable strategy” under “social” pressures occurring when individually asymmetrical organisms must coordinate their behavior with the behavior of other asymmetrical organisms of the same or different species.  
  Address Department of Psychology and B.R.A.I.N. Centre for Neuroscience, University of Trieste, 34123 Trieste, Italy. vallorti@univ.trieste.it  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-525X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16209828 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4622  
Permanent link to this record
 

 
Author Rogers, L.J. url  doi
openurl 
  Title Evolution of hemispheric specialization: advantages and disadvantages Type Journal Article
  Year 2000 Publication Brain and Language Abbreviated Journal Brain Lang  
  Volume 73 Issue 2 Pages 236-253  
  Keywords Aggression/psychology; Animals; Behavior, Animal/physiology; Brain/*physiology; Chickens/physiology; *Evolution; Feeding Behavior/physiology; Functional Laterality/*physiology; Visual Fields/physiology; Visual Perception/physiology  
  Abstract Lateralization of the brain appeared early in evolution and many of its features appear to have been retained, possibly even in humans. We now have a considerable amount of information on the different forms of lateralization in a number of species, and the commonalities of these are discussed, but there has been relatively little investigation of the advantages of being lateralized. This article reports new findings on the differences between lateralized and nonlateralized chicks. The lateralized chicks were exposed to light for 24 h on day 19 of incubation, a treatment known to lead to lateralization of a number of visually guided responses, and the nonlateralized chicks were incubated in the dark. When they were feeding, the lateralized chicks were found to detect a stimulus resembling a raptor with shorter latency than nonlateralized chicks. This difference was not a nonspecific effect caused by the light-exposed chicks being more distressed by the stimulus. Instead, it appears to be a genuine advantage conferred by having a lateralized brain. It is suggested that having a lateralized brain allows dual attention to the tasks of feeding (right eye and left hemisphere) and vigilance for predators (left eye and right hemisphere). Nonlateralized chicks appear to perform these dual tasks less efficiently than lateralized ones. Reference is made to other species in discussing these results.  
  Address Division of Zoology, University of New England, Armidale, New South Wales, Australia. lrogers@metz.une.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-934X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10856176 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4621  
Permanent link to this record
 

 
Author Pick, D.F.; Lovell, G.; Brown, S.; Dail, D. url  doi
openurl 
  Title Equine color perception revisited Type Journal Article
  Year 1994 Publication Applied Animal Behaviour Science Abbreviated Journal Appl. Anim. Behav. Sci.  
  Volume 42 Issue 1 Pages 61-65  
  Keywords Equine; Color perception; Dichromat  
  Abstract An attempt to replicate Grzimek (1952; Z. Tierpsychol., 27: 330-338) is reported where a Quarter-Horse mare chose between colored and gray stimuli for food reinforcement. Stimuli varied across a broad range of reflectance values. A double-blind procedure with additional controls for auditory, olfactory, tactile, and position cues was used. The subject could reliably discriminate blue (462 nm) vs. gray, and red (700 nm) vs. gray without regard to reflectance (P<0.001), but could not discriminate green (496 nm) vs. gray. It is suggested that horses are dichromats in a manner similar to swine and cattle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Equine Behaviour @ team @ Serial 4368  
Permanent link to this record
 

 
Author Brennan, P.A. doi  openurl
  Title The nose knows who's who: chemosensory individuality and mate recognition in mice Type Journal Article
  Year 2004 Publication Hormones and Behavior Abbreviated Journal Horm Behav  
  Volume 46 Issue 3 Pages 231-240  
  Keywords Animals; Chemoreceptors/physiology; Discrimination Learning/*physiology; Embryo Implantation/physiology; Female; Individuality; Major Histocompatibility Complex/physiology; Male; Mice; Neurons, Afferent/physiology; Nose/cytology/physiology; Perception/physiology; Pregnancy; Pregnancy Maintenance/physiology; Pregnancy, Animal/*physiology; Receptors, Odorant/*physiology; Recognition (Psychology)/*physiology; Sexual Behavior, Animal/*physiology; Smell/*physiology; Urine/physiology; Vomeronasal Organ/cytology/physiology  
  Abstract Individual recognition is an important component of behaviors, such as mate choice and maternal bonding that are vital for reproductive success. This article highlights recent developments in our understanding of the chemosensory cues and the neural pathways involved in individuality discrimination in rodents. There appear to be several types of chemosensory signal of individuality that are influenced by the highly polymorphic families of major histocompatibility complex (MHC) proteins or major urinary proteins (MUPs). Both have the capability of binding small molecules and may influence the individual profile of these chemosignals in biological fluids such as urine, skin secretions, or saliva. Moreover, these proteins, or peptides associated with them, can be taken up into the vomeronasal organ (VNO) where they can potentially interact directly with the vomeronasal receptors. This is particularly interesting given the expression of major histocompatibility complex Ib proteins by the V2R class of vomeronasal receptor and the highly selective responses of accessory olfactory bulb (AOB) mitral cells to strain identity. These findings are consistent with the role of the vomeronasal system in mediating individual discrimination that allows mate recognition in the context of the pregnancy block effect. This is hypothesized to involve a selective increase in the inhibitory control of mitral cells in the accessory olfactory bulb at the first level of processing of the vomeronasal stimulus.  
  Address Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge CB3 8AA, UK. pab23@cus.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-506X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15325224 Approved no  
  Call Number Equine Behaviour @ team @ Serial 4191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print