|
Davies, H. M. S., & Merritt, J. S. (2004). Surface strains around the midshaft of the third metacarpal bone during turning. Equine Veterinary Journal, 36(8), 689–692.
Abstract: Summary Reasons for performing study: Bone strains quantify skeletal effects of specific exercise and hence assist in designing training programmes to avoid bone injury. Objective: To test whether compressive strains increase on the lateral surface of the inside third metacarpal bone (McIII) and the medial surface of the outside McIII in a turn. Methods: Rosette strain gauges on dorsal, medial and lateral surfaces of the midshaft of the left McIII in 2 Thoroughbred geldings were recorded simultaneously during turning at the walk on a bitumen surface. Results: Medial surface: Compression peaks were larger in the outside limb. Tension peaks were larger in the inside limb and in a tighter turn. On the lateral surface compression and tension peaks were larger on the inside limb, which showed the largest recorded strains (compression of -1400 microstrains). Dorsal compression strains were larger on the outside limb and on a larger circle. Tensile strains were similar in both directions and larger on a larger circle. Conclusions: Compressive strains increased on the lateral surface of the inside McIII and medial surface of the outside McIII in a turn. Potential relevance: Slow-speed turning exercise may be sufficient to maintain bone mechanical characteristics in the inside limb lateral McIII cortex. Further work is needed to confirm these findings and to determine whether faster gaits and/or tighter turns are sufficient to cause bone modelling levels of strain in the medial and lateral McIII cortex.
|
|
Goodwin, D. (1999). The importance of ethology in understanding the behaviour of the horse. Equine Veterinary Journal, 31(S28), 15–19.
Abstract: Summary Domestication has provided the horse with food, shelter, veterinary care and protection, allowing individuals an increased chance of survival. However, the restriction of movement, limited breeding opportunities and a requirement to expend energy, for the benefit of another species, conflict with the evolutionary processes which shaped the behaviour of its predecessors. The behaviour of the horse is defined by its niche as a social prey species but many of the traits which ensured the survival of its ancestors are difficult to accommodate in the domestic environment. There has been a long association between horses and man and many features of equine behaviour suggest a predisposition to interspecific cooperation. However, the importance of dominance in human understanding of social systems has tended to overemphasise its importance in the human-horse relationship. The evolving horse-human relationship from predation to companionship, has resulted in serial conflicts of interest for equine and human participants. Only by understanding the nature and origin of these conflicts can ethologists encourage equine management practices which minimise deleterious effects on the behaviour of the horse.
|
|
Sighieri, C., Tedeschi, D., De Andreis, C., Petri, L., & Baragli, P. (2003). Behaviour Patterns of Horses Can be Used to Establish a Dominant-Subordinate Relationship Between Man and Horse. Animal Welfare, 12(4), 705–708.
Abstract: This paper describes how man can enter the social hierarchy of the horse by mimicking the behaviour and stance it uses to establish dominance. A herd is organised according to a dominance hierarchy established by means of ritualised conflict. Dominance relationships are formed through these confrontations: one horse gains the dominant role and others identify themselves as subordinates. This study was conducted using five females of the Haflinger breed, totally unaccustomed to human contact, from a free-range breeding farm. The study methods were based on the three elements fundamental to the equilibrium of the herd: flight, herd instinct and hierarchy. The trainer-horse relationship was established in three phases: retreat, approach and association. At the end of the training sessions, all of the horses were able to respond correctly to the trainer. These observations suggest that it is possible to manage unhandled horses without coercion by mimicking their behaviour patterns.
|
|
Hartmann, E., Christensen, J. W., & McGreevy, P. D. (2017). Dominance and Leadership: Useful Concepts in Human-Horse Interactions? Proceedings of the 2017 Equine Science Symposium, 52, 1–9.
Abstract: Dominance hierarchies in horses primarily influence priority access to limited resources of any kind, resulting in predictable contest outcomes that potentially minimize aggressive encounters and associated risk of injury. Levels of aggression in group-kept horses under domestic conditions have been reported to be higher than in their feral counterparts but can often be attributed to suboptimal management. Horse owners often express concerns about the risk of injuries occurring in group-kept horses, but these concerns have not been substantiated by empirical investigations. What has not yet been sufficiently addressed are human safety aspects related to approaching and handling group-kept horses. Given horse's natural tendency to synchronize activity to promote group cohesion, questions remain about how group dynamics influence human-horse interactions. Group dynamics influence a variety of management scenarios, ranging from taking a horse out of its social group to the prospect of humans mimicking the horse's social system by taking a putative leadership role and seeking after an alpha position in the dominance hierarchy to achieve compliance. Yet, there is considerable debate about whether the roles horses attain in their social group are of any relevance in their reactions to humans. This article reviews the empirical data on social dynamics in horses, focusing on dominance and leadership theories and the merits of incorporating those concepts into the human-horse context. This will provide a constructive framework for informed debate and valuable guidance for owners managing group-kept horses and for optimizing human-horse interactions.
|
|
da Cruz, A. B., Hirata, S., dos Santos, M. E., & Mendonça, R. S. (2023). Show me your best side: Lateralization of social and resting behaviors in feral horses. Behav. Process., 206, 104839.
Abstract: Growing evidence shows a variety of sensorial and motor asymmetries in social and non-social interactions in various species, indicating a lateralized processing of information by the brain. Using digital video cameras on tripods and drones, this study investigated lateralization in frequency and duration of social behavior patterns, in affiliative, agonistic, and resting contexts, in a feral population of horses (Equus ferus caballus) in Northern Portugal, consisting of 37 individuals organized in eight harem groups. Affiliative interactions (including grooming) were more often performed, and lasted longer, when recipients were positioned to the right side. In recumbent resting (animals lying down) episodes on the left side lasted longer. Our results of an affiliative behavior having a right side tendency, provide partial support to the valence-specific hypothesis of Ahern and Schwartz (1979) – left hemisphere dominance for positive affect, affiliative behaviors. Longer recumbent resting episodes on the left side may be due to synchronization. However, in both instances it is discussed how lateralization may be context dependent. Investigating the position asymmetries of social behaviors in feral equids will contribute to a better understanding of differential lateralization and hemispheric specialization from the ecological and evolutionary perspectives.
|
|
|