toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Abbruzzetti, S.; Viappiani, C.; Small, J.R.; Libertini, L.J.; Small, E.W. openurl 
  Title Kinetics of histidine deligation from the heme in GuHCl-unfolded Fe(III) cytochrome C studied by a laser-induced pH-jump technique Type Journal Article
  Year 2001 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 123 Issue 27 Pages 6649-6653  
  Keywords Animals; *Bacterial Proteins; Cytochrome c Group/*chemistry; Guanidine/*chemistry; Heme/*chemistry; Histidine/*chemistry; Horses; Hydrogen-Ion Concentration; Kinetics; *Lasers; Ligands; Protein Folding  
  Abstract We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  
  Address Dipartimento di Fisica, Universita di Parma, Istituto Nazionale per la Fisica della Materia, 43100 Parma, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11439052 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3788  
Permanent link to this record
 

 
Author (up) Andersen, N.H.; Norgaard, A.; Jensen, T.J.; Ulstrup, J. url  openurl
  Title Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c4 Type Journal Article
  Year 2002 Publication Journal of Inorganic Biochemistry Abbreviated Journal  
  Volume 88 Issue 3-4 Pages 316-327  
  Keywords P. stutzeri cytochrome c4; Sequential unfolding; Di-haem protein; Unfolding  
  Abstract P. stutzeri cytochrome c4 is a di-haem protein, composed of two globular domains each with His-Met coordinated haem, and a hydrogen bond network between the domains. The domain foldings are highly symmetric but with specific differences including structural differences of ligand coordination, and different spin states of the oxidised haem groups. We have studied unfolding of oxidised P. stutzeri cyt c4 induced thermally and by chemical denaturants. Horse heart cyt c was a reference molecule. Isothermal unfolding induced by guanidinium chloride and acid was followed by Soret, α/β, and 701-nm band absorption, and by far-UV circular dichroism spectroscopy. Multifarious patterns emerge, but the two domains clearly unfold sequentially. One phase, assigned to unfolding of the N-terminal domain, proceeds at guanidinium concentrations up to [approximate]1.0 M. This is followed by two overlapping phases at higher concentrations. The intermediate state maintains Fe-Met coordination, assigned to the C-terminal domain. Interdomain interaction is reflected in decreasing values of the cooperativity parameters. Differential scanning calorimetry shows a single peak, but two peaks appear when guanidinium chloride up to 0.4 M is present. This reflects different chemical action in chemical and thermal unfolding. Acid-induced unfolding kinetics was addressed by pH jumps using diode array stopped-flow techniques. Three kinetic phases in the 701 nm Fe-Met marker band, and four phases in the Soret and α/β bands, spanning 4-1000 ms could be distinguished on pH jumps from 7.5 to the range 2.5-3.5. In this range of time and pH cyt c appears to unfold in no more than two phases. Spectral properties of the kinetic intermediates could be identified. Sequential domain unfolding, formation of high-spin states, and an intermediate state with Fe-Met coordination to a single haem group are features of the unfolding kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3973  
Permanent link to this record
 

 
Author (up) Dyson, H.J.; Beattie, J.K. openurl 
  Title Spin state and unfolding equilibria of ferricytochrome c in acidic solutions Type Journal Article
  Year 1982 Publication The Journal of Biological Chemistry Abbreviated Journal J Biol Chem  
  Volume 257 Issue 5 Pages 2267-2273  
  Keywords Animals; *Cytochrome c Group; Electron Spin Resonance Spectroscopy; Heme; Horses; Hydrogen-Ion Concentration; Kinetics; Ligands; Myocardium; Protein Binding; Protein Conformation; Spectrophotometry; Temperature  
  Abstract Equilibrium, stopped flow, and temperature-jump spectrophotometry have been used to identify processes in the unfolding of ferricytochrome c in acidic aqueous solutions. A relaxation occurring in approximately 100 microseconds involves perturbation of a spin-equilibrium between two folded conformers of the protein with methionine-80 coordinated or dissociated from the heme iron. The protein unfolds more slowly, in milliseconds, with dissociation and protonation of histidine-18. These two transitions appear cooperative in equilibrium measurements at low (0.01 M) ionic strength, but are separated at higher (0.10 M) ionic strength. They are resolved under both conditions in the dynamic measurements. The spin-equilibrium description permits a unified explanation of a number of properties of ferricytochrome c in acidic aqueous solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6277891 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3807  
Permanent link to this record
 

 
Author (up) Hagen, S.J.; Eaton, W.A. doi  openurl
  Title Two-state expansion and collapse of a polypeptide Type Journal Article
  Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 301 Issue 4 Pages 1019-1027  
  Keywords Animals; Computer Simulation; Cytochrome c Group/*chemistry/*metabolism; Horses; Kinetics; Lasers; Models, Chemical; Peptides/*chemistry/*metabolism; Protein Conformation; Protein Denaturation; *Protein Folding; Spectrometry, Fluorescence; Temperature; Thermodynamics  
  Abstract The initial phase of folding for many proteins is presumed to be the collapse of the polypeptide chain from expanded to compact, but still denatured, conformations. Theory and simulations suggest that this collapse may be a two-state transition, characterized by barrier-crossing kinetics, while the collapse of homopolymers is continuous and multi-phasic. We have used a laser temperature-jump with fluorescence spectroscopy to measure the complete time-course of the collapse of denatured cytochrome c with nanosecond time resolution. We find the process to be exponential in time and thermally activated, with an apparent activation energy approximately 9 k(B)T (after correction for solvent viscosity). These results indicate that polypeptide collapse is kinetically a two-state transition. Because of the observed free energy barrier, the time scale of polypeptide collapse is dramatically slower than is predicted by Langevin models for homopolymer collapse.  
  Address Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Building 5, Bethesda, MD, 20892-0520, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10966803 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3790  
Permanent link to this record
 

 
Author (up) Hasumi, H. openurl 
  Title Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method Type Journal Article
  Year 1980 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 626 Issue 2 Pages 265-276  
  Keywords Circular Dichroism; *Cytochrome c Group; Hydrogen-Ion Concentration; Isomerism; Kinetics; Spectrophotometry  
  Abstract The isomerization of horse-heart ferricytochrome c caused by varying pH was kinetically studied by using circular dichroism (CD) and optical absorption stopped-flow techniques. In the pH range of 7--13, the existence of the three different forms of ferricytochrome c (pH less than 10, pH 10--12, and pH greater than 12) was indicated from the statistical difference CD spectra. On the basis of analyses of the stopped-flow traces in the near-ultraviolet and Soret wavelength regions, the isomerization of ferricytochrome c from neutral form to the above three alkaline forms was interpreted as follows (1) below pH 10, the replacement of the intrinsic ligand of methionine residue by lysine residue occurs; (2) between pH 10 and 12, the uncoupling of the polypeptide chain from close proximity of the heme group occurs first, followed by the interconversion of the intrinsic ligands; and (3) above pH 12, hydroxide form of ferricytochrome c is formed, though the replacement of the intrinsic ligand by extrinsic ligands may occur via different routes from those below pH 12. The CD changes at 288 nm and in the Soret region caused by the pH-jump (down) from pH 6.0 to 1.6 were compared with the appearance of the 620-nm absorption band ascribed to the formation of the high-spin form of ferricytochrome c. Both CD and absorption changes indicated that the isomerization at pH 1.6 consisted of two processes: one proceeded within the dead-time (about 2 ms) of the stopped-flow apparatus and the other proceeded at a determinable rate with the apparatus. On the basis of these results, the isomerization of ferricytochrome c at pH 1.6 was explained as follows: (1) the transition from the low-spin form to the high-spin forms occurs within about 2 ms, the dead-time of the stopped-flow apparatus; and (2) the polypeptide chain is unfolded after the formation of the high-spin form.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6260152 Approved no  
  Call Number refbase @ user @ Serial 3876  
Permanent link to this record
 

 
Author (up) Hoang, L.; Maity, H.; Krishna, M.M.G.; Lin, Y.; Englander, S.W. openurl 
  Title Folding units govern the cytochrome c alkaline transition Type Journal Article
  Year 2003 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 331 Issue 1 Pages 37-43  
  Keywords Animals; Cytochrome c Group/*chemistry; Horses; Hydrogen/chemistry; Hydrogen-Ion Concentration; Kinetics; Models, Molecular; *Protein Folding; Protein Structure, Tertiary; Spectrum Analysis; Titrimetry  
  Abstract The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  
  Address Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. lhoang@mail.upenn.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12875834 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3781  
Permanent link to this record
 

 
Author (up) Kihara, H. url  openurl
  Title Comparison of the redox reactions of various types of cytochrome c with iron hexacyanides Type Journal Article
  Year 1981 Publication Biochimica et Biophysica Acta (BBA) – Bioenergetics Abbreviated Journal  
  Volume 634 Issue Pages 93-104  
  Keywords Cytochrome c; Redox reaction; Iron hexacyanide; Temperature jump; Electron transfer  
  Abstract The dynamic behavior of various types of cytochromes c in the redox reaction with iron hexacyanides was studied using a temperature-jump method in order to elucidate the molecular mechanism of the redox reaction of cytochromes with their oxidoreductants. Transmittance after the temperature jump changed through a single exponential decay for all cytochromes investigated. Under a constant concentration of anion, the redox reaction of various types of cytochrome c with iron hexacyanides was analyzed according to the scheme: Ki=kt/k-i (i=1,2,3) where C(III) and C(II) are ferric and ferrous cytochromes, respectively, Fe(III) and Fe(II) are ferri- and ferrocyanides, respectively, C(III) [middle dot] Fe(II) is the ferricytochrome-ferrocyanide complex and C(II) [middle dot] Fe(III) is the ferrocytochrome-ferricyanide complex. When step B is slower than the other two steps A and C, τ-1 can be represented approximately as where the bar over the variables denotes the equilibrium value. In a large excess of ferrocyanide against cytochrome, we can estimate k2, k-2, K1 and K3 independently. In the case of horse cytochrome c at 18[degree sign]C in 0.1 M phosphate buffer at pH 7 with 0.3 M KNO3, the estimated parameters are k2 = 100 +/- 50 s-1, k-2 = (3.5 +/- 1.0) [middle dot] 103 s-1, K1 = 15 +/- 7 M-1 and K3 = (8.5 +/- 1.5) [middle dot] 10-4 M. From the same experiments for seven cytochromes (cytochrome c from horse, tuna, Candida krusei, Saccharomyces oviformis, Rhodospirillum rubrum cytochrome c2, Spirulina platensis cytochrome c-554 and Thermus thermophilus cytochrome c-552), the following results can be deduced. (1) Each parameter defined in the scheme above (k2, k-2, K1, K3) diverged beyond the error range. Above all, k2 values of cytochromes c-554 and c-552 are as large as 1 [middle dot] 104 s-1 and much larger than those for the other cytochromes (to 50 approx. 700 S-1). (2) The variance of k2K1 and k-2/K3 are relatively less than the variances of individual parameters (k2, k-2, K1 and K3), which suggests that the values of k2K1 and k-2/K3 have been conserved during the course of evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number refbase @ user @ Serial 3980  
Permanent link to this record
 

 
Author (up) Kihara, H.; Nakatani, H.; Hiromi, K.; Hon-Nami, K. doi  openurl
  Title Kinetic studies on redox reactions of hemoproteins. I. Reduction of thermoresistant cytochrome c-552 and horse heart cytochrome c by ferrocyanide Type Journal Article
  Year 1977 Publication Biochimica et Biophysica Acta Abbreviated Journal Biochim Biophys Acta  
  Volume 460 Issue 3 Pages 480-489  
  Keywords Animals; Bacteria; *Cytochrome c Group; *Ferrocyanides; Horses; Kinetics; Mathematics; Oxidation-Reduction; Spectrophotometry; Spectrophotometry, Ultraviolet; Temperature; Thermodynamics  
  Abstract The oxidation-reduction reaction of horse heart cytochrome c and cytochrome c (552, Thermus thermophilus), which is highly thermoresistant, was studied by temperature-jump method. Ferrohexacyanide was used as reductant. (Formula: see text.) Thermodynamic and activation parameters of the reaction obtained for both cytochromes were compared with each other. The results of this showed that (1) the redox potential of cytochrome c-552, + 0.19 V, is markedly less than that of horse heart cytochrome c. (2) deltaHox of cytochrome c-552 is considerably lower than that of horse heart cytochrome c. (3) deltaSox and deltaSred of cytochrome c-552 are more negative than those of horse heart cytochrome c. (4) kred of cytochrome c-552 is much lower than that of horse heart cytochrome c at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3002 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:195599 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3815  
Permanent link to this record
 

 
Author (up) Pierce, M.M.; Nall, B.T. doi  openurl
  Title Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization Type Journal Article
  Year 2000 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol  
  Volume 298 Issue 5 Pages 955-969  
  Keywords Amino Acid Sequence; Amino Acid Substitution/genetics; Binding Sites; Cytochrome c Group/*chemistry/genetics/*metabolism; *Cytochromes c; Enzyme Stability/drug effects; Fluorescence; Guanidine/pharmacology; Heme/*metabolism; Histidine/genetics/*metabolism; Hydrogen-Ion Concentration; Isomerism; Kinetics; Models, Molecular; Molecular Sequence Data; Mutation/genetics; Proline/*chemistry/metabolism; Protein Conformation/drug effects; Protein Denaturation/drug effects; *Protein Folding; Protein Renaturation; Saccharomyces cerevisiae/enzymology/genetics; Sequence Alignment; Thermodynamics  
  Abstract The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  
  Address Center for Biomolecular Structure, Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10801361 Approved no  
  Call Number refbase @ user @ Serial 3853  
Permanent link to this record
 

 
Author (up) Ridge, J.A.; Baldwin, R.L.; Labhardt, A.M. openurl 
  Title Nature of the fast and slow refolding reactions of iron(III) cytochrome c Type Journal Article
  Year 1981 Publication Biochemistry Abbreviated Journal Biochemistry  
  Volume 20 Issue 6 Pages 1622-1630  
  Keywords Animals; Ascorbic Acid; *Cytochrome c Group; Guanidines; Horses; Kinetics; Oxidation-Reduction; Protein Conformation; Spectrum Analysis  
  Abstract The fast and slow refolding reactions of iron(III) cytochrome c (Fe(III) cyt c), previously studied by Ikai et al. (Ikai, A., Fish, W. W., & Tanford, C. (1973) J. Mol. Biol. 73, 165--184), have been reinvestigated. The fast reaction has the major amplitude (78%) and is 100-fold faster than the slow reaction in these conditions (pH 7.2, 25 degrees C, 1.75 M guanidine hydrochloride). We show here that native cyt c is the product formed in the fast reaction as well as in the slow reaction. Two probes have been used to test for formation of native cyt c. absorbance in the 695-nm band and rate of reduction of by L-ascorbate. Different unfolded species (UF, US) give rise to the fast and slow refolding reactions, as shown both by refolding assays at different times after unfolding (“double-jump” experiments) and by the formation of native cyt c in each of the fast and slow refolding reactions. Thus the fast refolding reaction is UF leads to N and the slow refolding reaction is Us leads to N, where N is native cyt c, and there is a US in equilibrium UF equilibrium in unfolded cyt c. The results are consistent with the UF in equilibrium US reaction being proline isomerization, but this has not yet been tested in detail. Folding intermediates have been detected in both reactions. In the UF leads to N reaction, the Soret absorbance change precedes the recovery of the native 695-nm band spectrum, showing that Soret absorbance monitors the formation of a folding intermediate. In the US leads to N reaction an ascorbate-reducible intermediate has been found at an early stage in folding and the Soret absorbance change occurs together with the change at 695 nm as N is formed in the final stage of folding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-2960 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:6261802 Approved no  
  Call Number Equine Behaviour @ team @ Serial 3809  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print